Whakaoti mō x
x = \frac{140813}{1824} = 77\frac{365}{1824} \approx 77.200109649
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 20-1544=\frac{126}{57456}
Whakawehea ngā taha e rua ki te 57456.
x\times 20-1544=\frac{1}{456}
Whakahekea te hautanga \frac{126}{57456} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 126.
x\times 20=\frac{1}{456}+1544
Me tāpiri te 1544 ki ngā taha e rua.
x\times 20=\frac{1}{456}+\frac{704064}{456}
Me tahuri te 1544 ki te hautau \frac{704064}{456}.
x\times 20=\frac{1+704064}{456}
Tā te mea he rite te tauraro o \frac{1}{456} me \frac{704064}{456}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
x\times 20=\frac{704065}{456}
Tāpirihia te 1 ki te 704064, ka 704065.
x=\frac{\frac{704065}{456}}{20}
Whakawehea ngā taha e rua ki te 20.
x=\frac{704065}{456\times 20}
Tuhia te \frac{\frac{704065}{456}}{20} hei hautanga kotahi.
x=\frac{704065}{9120}
Whakareatia te 456 ki te 20, ka 9120.
x=\frac{140813}{1824}
Whakahekea te hautanga \frac{704065}{9120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}