Whakaoti mō x
x = \frac{29570729}{383040} = 77\frac{76649}{383040} \approx 77.200107038
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 20-1544=\frac{123}{57456}
Whakawehea ngā taha e rua ki te 57456.
x\times 20-1544=\frac{41}{19152}
Whakahekea te hautanga \frac{123}{57456} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x\times 20=\frac{41}{19152}+1544
Me tāpiri te 1544 ki ngā taha e rua.
x\times 20=\frac{41}{19152}+\frac{29570688}{19152}
Me tahuri te 1544 ki te hautau \frac{29570688}{19152}.
x\times 20=\frac{41+29570688}{19152}
Tā te mea he rite te tauraro o \frac{41}{19152} me \frac{29570688}{19152}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
x\times 20=\frac{29570729}{19152}
Tāpirihia te 41 ki te 29570688, ka 29570729.
x=\frac{\frac{29570729}{19152}}{20}
Whakawehea ngā taha e rua ki te 20.
x=\frac{29570729}{19152\times 20}
Tuhia te \frac{\frac{29570729}{19152}}{20} hei hautanga kotahi.
x=\frac{29570729}{383040}
Whakareatia te 19152 ki te 20, ka 383040.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}