Aromātai
\frac{65}{3}\approx 21.666666667
Tauwehe
\frac{5 \cdot 13}{3} = 21\frac{2}{3} = 21.666666666666668
Tohaina
Kua tāruatia ki te papatopenga
56-\frac{112}{3}+3
Whakahekea te hautanga \frac{448}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{168}{3}-\frac{112}{3}+3
Me tahuri te 56 ki te hautau \frac{168}{3}.
\frac{168-112}{3}+3
Tā te mea he rite te tauraro o \frac{168}{3} me \frac{112}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{56}{3}+3
Tangohia te 112 i te 168, ka 56.
\frac{56}{3}+\frac{9}{3}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{56+9}{3}
Tā te mea he rite te tauraro o \frac{56}{3} me \frac{9}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{65}{3}
Tāpirihia te 56 ki te 9, ka 65.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}