Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=17 ab=56\left(-3\right)=-168
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 56s^{2}+as+bs-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Tātaihia te tapeke mō ia takirua.
a=-7 b=24
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(56s^{2}-7s\right)+\left(24s-3\right)
Tuhia anō te 56s^{2}+17s-3 hei \left(56s^{2}-7s\right)+\left(24s-3\right).
7s\left(8s-1\right)+3\left(8s-1\right)
Tauwehea te 7s i te tuatahi me te 3 i te rōpū tuarua.
\left(8s-1\right)\left(7s+3\right)
Whakatauwehea atu te kīanga pātahi 8s-1 mā te whakamahi i te āhuatanga tātai tohatoha.
56s^{2}+17s-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-17±\sqrt{17^{2}-4\times 56\left(-3\right)}}{2\times 56}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-17±\sqrt{289-4\times 56\left(-3\right)}}{2\times 56}
Pūrua 17.
s=\frac{-17±\sqrt{289-224\left(-3\right)}}{2\times 56}
Whakareatia -4 ki te 56.
s=\frac{-17±\sqrt{289+672}}{2\times 56}
Whakareatia -224 ki te -3.
s=\frac{-17±\sqrt{961}}{2\times 56}
Tāpiri 289 ki te 672.
s=\frac{-17±31}{2\times 56}
Tuhia te pūtakerua o te 961.
s=\frac{-17±31}{112}
Whakareatia 2 ki te 56.
s=\frac{14}{112}
Nā, me whakaoti te whārite s=\frac{-17±31}{112} ina he tāpiri te ±. Tāpiri -17 ki te 31.
s=\frac{1}{8}
Whakahekea te hautanga \frac{14}{112} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
s=-\frac{48}{112}
Nā, me whakaoti te whārite s=\frac{-17±31}{112} ina he tango te ±. Tango 31 mai i -17.
s=-\frac{3}{7}
Whakahekea te hautanga \frac{-48}{112} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
56s^{2}+17s-3=56\left(s-\frac{1}{8}\right)\left(s-\left(-\frac{3}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{8} mō te x_{1} me te -\frac{3}{7} mō te x_{2}.
56s^{2}+17s-3=56\left(s-\frac{1}{8}\right)\left(s+\frac{3}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
56s^{2}+17s-3=56\times \frac{8s-1}{8}\left(s+\frac{3}{7}\right)
Tango \frac{1}{8} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
56s^{2}+17s-3=56\times \frac{8s-1}{8}\times \frac{7s+3}{7}
Tāpiri \frac{3}{7} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
56s^{2}+17s-3=56\times \frac{\left(8s-1\right)\left(7s+3\right)}{8\times 7}
Whakareatia \frac{8s-1}{8} ki te \frac{7s+3}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
56s^{2}+17s-3=56\times \frac{\left(8s-1\right)\left(7s+3\right)}{56}
Whakareatia 8 ki te 7.
56s^{2}+17s-3=\left(8s-1\right)\left(7s+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 56 i roto i te 56 me te 56.