56 ( x + 11 ) = 40 + 6 ( x + 2
Whakaoti mō x
x = -\frac{282}{25} = -11\frac{7}{25} = -11.28
Graph
Tohaina
Kua tāruatia ki te papatopenga
56x+616=40+6\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 56 ki te x+11.
56x+616=40+6x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+2.
56x+616=52+6x
Tāpirihia te 40 ki te 12, ka 52.
56x+616-6x=52
Tangohia te 6x mai i ngā taha e rua.
50x+616=52
Pahekotia te 56x me -6x, ka 50x.
50x=52-616
Tangohia te 616 mai i ngā taha e rua.
50x=-564
Tangohia te 616 i te 52, ka -564.
x=\frac{-564}{50}
Whakawehea ngā taha e rua ki te 50.
x=-\frac{282}{25}
Whakahekea te hautanga \frac{-564}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}