Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-30 ab=56\times 1=56
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 56x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-56 -2,-28 -4,-14 -7,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 56.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
Tātaihia te tapeke mō ia takirua.
a=-28 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(56x^{2}-28x\right)+\left(-2x+1\right)
Tuhia anō te 56x^{2}-30x+1 hei \left(56x^{2}-28x\right)+\left(-2x+1\right).
28x\left(2x-1\right)-\left(2x-1\right)
Tauwehea te 28x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-1\right)\left(28x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=\frac{1}{28}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 28x-1=0.
56x^{2}-30x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 56}}{2\times 56}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 56 mō a, -30 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 56}}{2\times 56}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 56}
Whakareatia -4 ki te 56.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 56}
Tāpiri 900 ki te -224.
x=\frac{-\left(-30\right)±26}{2\times 56}
Tuhia te pūtakerua o te 676.
x=\frac{30±26}{2\times 56}
Ko te tauaro o -30 ko 30.
x=\frac{30±26}{112}
Whakareatia 2 ki te 56.
x=\frac{56}{112}
Nā, me whakaoti te whārite x=\frac{30±26}{112} ina he tāpiri te ±. Tāpiri 30 ki te 26.
x=\frac{1}{2}
Whakahekea te hautanga \frac{56}{112} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 56.
x=\frac{4}{112}
Nā, me whakaoti te whārite x=\frac{30±26}{112} ina he tango te ±. Tango 26 mai i 30.
x=\frac{1}{28}
Whakahekea te hautanga \frac{4}{112} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=\frac{1}{28}
Kua oti te whārite te whakatau.
56x^{2}-30x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
56x^{2}-30x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
56x^{2}-30x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{56x^{2}-30x}{56}=-\frac{1}{56}
Whakawehea ngā taha e rua ki te 56.
x^{2}+\left(-\frac{30}{56}\right)x=-\frac{1}{56}
Mā te whakawehe ki te 56 ka wetekia te whakareanga ki te 56.
x^{2}-\frac{15}{28}x=-\frac{1}{56}
Whakahekea te hautanga \frac{-30}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{15}{28}x+\left(-\frac{15}{56}\right)^{2}=-\frac{1}{56}+\left(-\frac{15}{56}\right)^{2}
Whakawehea te -\frac{15}{28}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{56}. Nā, tāpiria te pūrua o te -\frac{15}{56} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{28}x+\frac{225}{3136}=-\frac{1}{56}+\frac{225}{3136}
Pūruatia -\frac{15}{56} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{15}{28}x+\frac{225}{3136}=\frac{169}{3136}
Tāpiri -\frac{1}{56} ki te \frac{225}{3136} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{56}\right)^{2}=\frac{169}{3136}
Tauwehea x^{2}-\frac{15}{28}x+\frac{225}{3136}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{56}\right)^{2}}=\sqrt{\frac{169}{3136}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{56}=\frac{13}{56} x-\frac{15}{56}=-\frac{13}{56}
Whakarūnātia.
x=\frac{1}{2} x=\frac{1}{28}
Me tāpiri \frac{15}{56} ki ngā taha e rua o te whārite.