Whakaoti mō x (complex solution)
x=\frac{3+\sqrt{5}i}{28}\approx 0.107142857+0.079859571i
x=\frac{-\sqrt{5}i+3}{28}\approx 0.107142857-0.079859571i
Graph
Tohaina
Kua tāruatia ki te papatopenga
56x^{2}-12x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 56}}{2\times 56}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 56 mō a, -12 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 56}}{2\times 56}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-224}}{2\times 56}
Whakareatia -4 ki te 56.
x=\frac{-\left(-12\right)±\sqrt{-80}}{2\times 56}
Tāpiri 144 ki te -224.
x=\frac{-\left(-12\right)±4\sqrt{5}i}{2\times 56}
Tuhia te pūtakerua o te -80.
x=\frac{12±4\sqrt{5}i}{2\times 56}
Ko te tauaro o -12 ko 12.
x=\frac{12±4\sqrt{5}i}{112}
Whakareatia 2 ki te 56.
x=\frac{12+4\sqrt{5}i}{112}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{5}i}{112} ina he tāpiri te ±. Tāpiri 12 ki te 4i\sqrt{5}.
x=\frac{3+\sqrt{5}i}{28}
Whakawehe 12+4i\sqrt{5} ki te 112.
x=\frac{-4\sqrt{5}i+12}{112}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{5}i}{112} ina he tango te ±. Tango 4i\sqrt{5} mai i 12.
x=\frac{-\sqrt{5}i+3}{28}
Whakawehe 12-4i\sqrt{5} ki te 112.
x=\frac{3+\sqrt{5}i}{28} x=\frac{-\sqrt{5}i+3}{28}
Kua oti te whārite te whakatau.
56x^{2}-12x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
56x^{2}-12x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
56x^{2}-12x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{56x^{2}-12x}{56}=-\frac{1}{56}
Whakawehea ngā taha e rua ki te 56.
x^{2}+\left(-\frac{12}{56}\right)x=-\frac{1}{56}
Mā te whakawehe ki te 56 ka wetekia te whakareanga ki te 56.
x^{2}-\frac{3}{14}x=-\frac{1}{56}
Whakahekea te hautanga \frac{-12}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{3}{14}x+\left(-\frac{3}{28}\right)^{2}=-\frac{1}{56}+\left(-\frac{3}{28}\right)^{2}
Whakawehea te -\frac{3}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{28}. Nā, tāpiria te pūrua o te -\frac{3}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{14}x+\frac{9}{784}=-\frac{1}{56}+\frac{9}{784}
Pūruatia -\frac{3}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{14}x+\frac{9}{784}=-\frac{5}{784}
Tāpiri -\frac{1}{56} ki te \frac{9}{784} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{28}\right)^{2}=-\frac{5}{784}
Tauwehea x^{2}-\frac{3}{14}x+\frac{9}{784}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{28}\right)^{2}}=\sqrt{-\frac{5}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{28}=\frac{\sqrt{5}i}{28} x-\frac{3}{28}=-\frac{\sqrt{5}i}{28}
Whakarūnātia.
x=\frac{3+\sqrt{5}i}{28} x=\frac{-\sqrt{5}i+3}{28}
Me tāpiri \frac{3}{28} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}