Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

56x^{2}+4x+85=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 56\times 85}}{2\times 56}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 56 mō a, 4 mō b, me 85 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 56\times 85}}{2\times 56}
Pūrua 4.
x=\frac{-4±\sqrt{16-224\times 85}}{2\times 56}
Whakareatia -4 ki te 56.
x=\frac{-4±\sqrt{16-19040}}{2\times 56}
Whakareatia -224 ki te 85.
x=\frac{-4±\sqrt{-19024}}{2\times 56}
Tāpiri 16 ki te -19040.
x=\frac{-4±4\sqrt{1189}i}{2\times 56}
Tuhia te pūtakerua o te -19024.
x=\frac{-4±4\sqrt{1189}i}{112}
Whakareatia 2 ki te 56.
x=\frac{-4+4\sqrt{1189}i}{112}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{1189}i}{112} ina he tāpiri te ±. Tāpiri -4 ki te 4i\sqrt{1189}.
x=\frac{-1+\sqrt{1189}i}{28}
Whakawehe -4+4i\sqrt{1189} ki te 112.
x=\frac{-4\sqrt{1189}i-4}{112}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{1189}i}{112} ina he tango te ±. Tango 4i\sqrt{1189} mai i -4.
x=\frac{-\sqrt{1189}i-1}{28}
Whakawehe -4-4i\sqrt{1189} ki te 112.
x=\frac{-1+\sqrt{1189}i}{28} x=\frac{-\sqrt{1189}i-1}{28}
Kua oti te whārite te whakatau.
56x^{2}+4x+85=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
56x^{2}+4x+85-85=-85
Me tango 85 mai i ngā taha e rua o te whārite.
56x^{2}+4x=-85
Mā te tango i te 85 i a ia ake anō ka toe ko te 0.
\frac{56x^{2}+4x}{56}=-\frac{85}{56}
Whakawehea ngā taha e rua ki te 56.
x^{2}+\frac{4}{56}x=-\frac{85}{56}
Mā te whakawehe ki te 56 ka wetekia te whakareanga ki te 56.
x^{2}+\frac{1}{14}x=-\frac{85}{56}
Whakahekea te hautanga \frac{4}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{1}{14}x+\left(\frac{1}{28}\right)^{2}=-\frac{85}{56}+\left(\frac{1}{28}\right)^{2}
Whakawehea te \frac{1}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{28}. Nā, tāpiria te pūrua o te \frac{1}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{14}x+\frac{1}{784}=-\frac{85}{56}+\frac{1}{784}
Pūruatia \frac{1}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{14}x+\frac{1}{784}=-\frac{1189}{784}
Tāpiri -\frac{85}{56} ki te \frac{1}{784} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{28}\right)^{2}=-\frac{1189}{784}
Tauwehea x^{2}+\frac{1}{14}x+\frac{1}{784}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{28}\right)^{2}}=\sqrt{-\frac{1189}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{28}=\frac{\sqrt{1189}i}{28} x+\frac{1}{28}=-\frac{\sqrt{1189}i}{28}
Whakarūnātia.
x=\frac{-1+\sqrt{1189}i}{28} x=\frac{-\sqrt{1189}i-1}{28}
Me tango \frac{1}{28} mai i ngā taha e rua o te whārite.