Aromātai
\frac{2183}{2}=1091.5
Tauwehe
\frac{37 \cdot 59}{2} = 1091\frac{1}{2} = 1091.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{715}{8}\times 12-5+24
Whakareatia te 55 ki te 13, ka 715.
\frac{715\times 12}{8}-5+24
Tuhia te \frac{715}{8}\times 12 hei hautanga kotahi.
\frac{8580}{8}-5+24
Whakareatia te 715 ki te 12, ka 8580.
\frac{2145}{2}-5+24
Whakahekea te hautanga \frac{8580}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{2145}{2}-\frac{10}{2}+24
Me tahuri te 5 ki te hautau \frac{10}{2}.
\frac{2145-10}{2}+24
Tā te mea he rite te tauraro o \frac{2145}{2} me \frac{10}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2135}{2}+24
Tangohia te 10 i te 2145, ka 2135.
\frac{2135}{2}+\frac{48}{2}
Me tahuri te 24 ki te hautau \frac{48}{2}.
\frac{2135+48}{2}
Tā te mea he rite te tauraro o \frac{2135}{2} me \frac{48}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2183}{2}
Tāpirihia te 2135 ki te 48, ka 2183.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}