Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5469.78}{4500}=1.05^{n}
Whakawehea ngā taha e rua ki te 4500.
\frac{546978}{450000}=1.05^{n}
Whakarohaina te \frac{5469.78}{4500} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{91163}{75000}=1.05^{n}
Whakahekea te hautanga \frac{546978}{450000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
1.05^{n}=\frac{91163}{75000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(1.05^{n})=\log(\frac{91163}{75000})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(1.05)=\log(\frac{91163}{75000})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(\frac{91163}{75000})}{\log(1.05)}
Whakawehea ngā taha e rua ki te \log(1.05).
n=\log_{1.05}\left(\frac{91163}{75000}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).