Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

54\left(1+x\right)^{2}=1215
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=1215
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
54+108x+54x^{2}=1215
Whakamahia te āhuatanga tohatoha hei whakarea te 54 ki te 1+2x+x^{2}.
54+108x+54x^{2}-1215=0
Tangohia te 1215 mai i ngā taha e rua.
-1161+108x+54x^{2}=0
Tangohia te 1215 i te 54, ka -1161.
54x^{2}+108x-1161=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-108±\sqrt{108^{2}-4\times 54\left(-1161\right)}}{2\times 54}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 54 mō a, 108 mō b, me -1161 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-108±\sqrt{11664-4\times 54\left(-1161\right)}}{2\times 54}
Pūrua 108.
x=\frac{-108±\sqrt{11664-216\left(-1161\right)}}{2\times 54}
Whakareatia -4 ki te 54.
x=\frac{-108±\sqrt{11664+250776}}{2\times 54}
Whakareatia -216 ki te -1161.
x=\frac{-108±\sqrt{262440}}{2\times 54}
Tāpiri 11664 ki te 250776.
x=\frac{-108±162\sqrt{10}}{2\times 54}
Tuhia te pūtakerua o te 262440.
x=\frac{-108±162\sqrt{10}}{108}
Whakareatia 2 ki te 54.
x=\frac{162\sqrt{10}-108}{108}
Nā, me whakaoti te whārite x=\frac{-108±162\sqrt{10}}{108} ina he tāpiri te ±. Tāpiri -108 ki te 162\sqrt{10}.
x=\frac{3\sqrt{10}}{2}-1
Whakawehe -108+162\sqrt{10} ki te 108.
x=\frac{-162\sqrt{10}-108}{108}
Nā, me whakaoti te whārite x=\frac{-108±162\sqrt{10}}{108} ina he tango te ±. Tango 162\sqrt{10} mai i -108.
x=-\frac{3\sqrt{10}}{2}-1
Whakawehe -108-162\sqrt{10} ki te 108.
x=\frac{3\sqrt{10}}{2}-1 x=-\frac{3\sqrt{10}}{2}-1
Kua oti te whārite te whakatau.
54\left(1+x\right)^{2}=1215
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=1215
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
54+108x+54x^{2}=1215
Whakamahia te āhuatanga tohatoha hei whakarea te 54 ki te 1+2x+x^{2}.
108x+54x^{2}=1215-54
Tangohia te 54 mai i ngā taha e rua.
108x+54x^{2}=1161
Tangohia te 54 i te 1215, ka 1161.
54x^{2}+108x=1161
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{54x^{2}+108x}{54}=\frac{1161}{54}
Whakawehea ngā taha e rua ki te 54.
x^{2}+\frac{108}{54}x=\frac{1161}{54}
Mā te whakawehe ki te 54 ka wetekia te whakareanga ki te 54.
x^{2}+2x=\frac{1161}{54}
Whakawehe 108 ki te 54.
x^{2}+2x=\frac{43}{2}
Whakahekea te hautanga \frac{1161}{54} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 27.
x^{2}+2x+1^{2}=\frac{43}{2}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{43}{2}+1
Pūrua 1.
x^{2}+2x+1=\frac{45}{2}
Tāpiri \frac{43}{2} ki te 1.
\left(x+1\right)^{2}=\frac{45}{2}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{45}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{3\sqrt{10}}{2} x+1=-\frac{3\sqrt{10}}{2}
Whakarūnātia.
x=\frac{3\sqrt{10}}{2}-1 x=-\frac{3\sqrt{10}}{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.