Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

54\left(1+x\right)^{2}=121.5
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=121.5
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
54+108x+54x^{2}=121.5
Whakamahia te āhuatanga tohatoha hei whakarea te 54 ki te 1+2x+x^{2}.
54+108x+54x^{2}-121.5=0
Tangohia te 121.5 mai i ngā taha e rua.
-67.5+108x+54x^{2}=0
Tangohia te 121.5 i te 54, ka -67.5.
54x^{2}+108x-67.5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-108±\sqrt{108^{2}-4\times 54\left(-67.5\right)}}{2\times 54}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 54 mō a, 108 mō b, me -67.5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-108±\sqrt{11664-4\times 54\left(-67.5\right)}}{2\times 54}
Pūrua 108.
x=\frac{-108±\sqrt{11664-216\left(-67.5\right)}}{2\times 54}
Whakareatia -4 ki te 54.
x=\frac{-108±\sqrt{11664+14580}}{2\times 54}
Whakareatia -216 ki te -67.5.
x=\frac{-108±\sqrt{26244}}{2\times 54}
Tāpiri 11664 ki te 14580.
x=\frac{-108±162}{2\times 54}
Tuhia te pūtakerua o te 26244.
x=\frac{-108±162}{108}
Whakareatia 2 ki te 54.
x=\frac{54}{108}
Nā, me whakaoti te whārite x=\frac{-108±162}{108} ina he tāpiri te ±. Tāpiri -108 ki te 162.
x=\frac{1}{2}
Whakahekea te hautanga \frac{54}{108} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 54.
x=-\frac{270}{108}
Nā, me whakaoti te whārite x=\frac{-108±162}{108} ina he tango te ±. Tango 162 mai i -108.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-270}{108} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 54.
x=\frac{1}{2} x=-\frac{5}{2}
Kua oti te whārite te whakatau.
54\left(1+x\right)^{2}=121.5
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=121.5
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
54+108x+54x^{2}=121.5
Whakamahia te āhuatanga tohatoha hei whakarea te 54 ki te 1+2x+x^{2}.
108x+54x^{2}=121.5-54
Tangohia te 54 mai i ngā taha e rua.
108x+54x^{2}=67.5
Tangohia te 54 i te 121.5, ka 67.5.
54x^{2}+108x=67.5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{54x^{2}+108x}{54}=\frac{67.5}{54}
Whakawehea ngā taha e rua ki te 54.
x^{2}+\frac{108}{54}x=\frac{67.5}{54}
Mā te whakawehe ki te 54 ka wetekia te whakareanga ki te 54.
x^{2}+2x=\frac{67.5}{54}
Whakawehe 108 ki te 54.
x^{2}+2x=1.25
Whakawehe 67.5 ki te 54.
x^{2}+2x+1^{2}=1.25+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=1.25+1
Pūrua 1.
x^{2}+2x+1=2.25
Tāpiri 1.25 ki te 1.
\left(x+1\right)^{2}=2.25
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2.25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{3}{2} x+1=-\frac{3}{2}
Whakarūnātia.
x=\frac{1}{2} x=-\frac{5}{2}
Me tango 1 mai i ngā taha e rua o te whārite.