Tauwehe
2\left(3x-2\right)\left(2x+a\right)\left(\frac{9x^{2}}{2}+3x+2\right)
Aromātai
54x^{4}+27ax^{3}-16x-8a
Graph
Tohaina
Kua tāruatia ki te papatopenga
54x^{4}+27ax^{3}-16x-8a
Whakaarohia te 54x^{4}+27x^{3}a-16x-8a hei pūrau ki runga i te taurangi x.
\left(6x-4\right)\left(9x^{3}+\frac{9ax^{2}}{2}+6x^{2}+3ax+4x+2a\right)
Kimihia he tauwehe o te āhua kx^{m}+n, e wehea ai e kx^{m} te huatahi me te pū nui rawa 54x^{4}, e wehea hoki e n te tauwehe pūmau -8a. Ko tētahi tauwehe pērā ko 6x-4. Whakatauwehea te pūrau mā te whakawehe ki tēnei tauwehe.
2\left(3x-2\right)
Whakaarohia te 6x-4. Tauwehea te 2.
\frac{9x^{2}}{2}\left(2x+a\right)+3x\left(2x+a\right)+2\left(2x+a\right)
Whakaarohia te 9x^{3}+\frac{9}{2}ax^{2}+6x^{2}+3ax+4x+2a. Mahia te whakarōpūtanga 9x^{3}+\frac{9ax^{2}}{2}+6x^{2}+3ax+4x+2a=\left(9x^{3}+\frac{9ax^{2}}{2}\right)+\left(6x^{2}+3ax\right)+\left(4x+2a\right), ka whakatauwehea atu \frac{9x^{2}}{2},3x,2 i tēnā rōpū, i tēnā rōpū.
\left(2x+a\right)\left(\frac{9x^{2}}{2}+3x+2\right)
Whakatauwehea atu te kīanga pātahi 2x+a mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3x-2\right)\left(9x^{2}+6x+4\right)\left(2x+a\right)
Me tuhi anō te kīanga whakatauwehe katoa. Whakarūnātia. Kāore te pūrau 9x^{2}+6x+4 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}