Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
536 \times 052-364 \times 048+364 \times 052-536 \times 048
Tohaina
Kua tāruatia ki te papatopenga
0\times 52-364\times 0\times 48+364\times 0\times 52-536\times 0\times 48
Whakareatia te 536 ki te 0, ka 0.
0-364\times 0\times 48+364\times 0\times 52-536\times 0\times 48
Whakareatia te 0 ki te 52, ka 0.
0-0\times 48+364\times 0\times 52-536\times 0\times 48
Whakareatia te 364 ki te 0, ka 0.
0-0+364\times 0\times 52-536\times 0\times 48
Whakareatia te 0 ki te 48, ka 0.
0+364\times 0\times 52-536\times 0\times 48
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0+0\times 52-536\times 0\times 48
Whakareatia te 364 ki te 0, ka 0.
0+0-536\times 0\times 48
Whakareatia te 0 ki te 52, ka 0.
0-536\times 0\times 48
Tāpirihia te 0 ki te 0, ka 0.
0-0\times 48
Whakareatia te 536 ki te 0, ka 0.
0-0
Whakareatia te 0 ki te 48, ka 0.
0
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}