Aromātai
51.15
Tauwehe
\frac{3 \cdot 11 \cdot 31}{5 \cdot 2 ^ {2}} = 51\frac{3}{20} = 51.15
Tohaina
Kua tāruatia ki te papatopenga
\frac{207}{4}-\frac{3}{5}
Me tahuri ki tau ā-ira 51.75 ki te hautau \frac{5175}{100}. Whakahekea te hautanga \frac{5175}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{1035}{20}-\frac{12}{20}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{207}{4} me \frac{3}{5} ki te hautau me te tautūnga 20.
\frac{1035-12}{20}
Tā te mea he rite te tauraro o \frac{1035}{20} me \frac{12}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{1023}{20}
Tangohia te 12 i te 1035, ka 1023.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}