5000 \times (1-135 \% )
Aromātai
-1750
Tauwehe
-1750
Tohaina
Kua tāruatia ki te papatopenga
5000\left(1-\frac{27}{20}\right)
Whakahekea te hautanga \frac{135}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
5000\left(\frac{20}{20}-\frac{27}{20}\right)
Me tahuri te 1 ki te hautau \frac{20}{20}.
5000\times \frac{20-27}{20}
Tā te mea he rite te tauraro o \frac{20}{20} me \frac{27}{20}, me tango rāua mā te tango i ō raua taurunga.
5000\left(-\frac{7}{20}\right)
Tangohia te 27 i te 20, ka -7.
\frac{5000\left(-7\right)}{20}
Tuhia te 5000\left(-\frac{7}{20}\right) hei hautanga kotahi.
\frac{-35000}{20}
Whakareatia te 5000 ki te -7, ka -35000.
-1750
Whakawehea te -35000 ki te 20, kia riro ko -1750.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}