50 { x }^{ 2 } +45+500-85=80 \%
Whakaoti mō x (complex solution)
x=-\frac{2\sqrt{1435}i}{25}\approx -0-3.030511508i
x=\frac{2\sqrt{1435}i}{25}\approx 3.030511508i
Graph
Tohaina
Kua tāruatia ki te papatopenga
50x^{2}+545-85=\frac{80}{100}
Tāpirihia te 45 ki te 500, ka 545.
50x^{2}+460=\frac{80}{100}
Tangohia te 85 i te 545, ka 460.
50x^{2}+460=\frac{4}{5}
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
50x^{2}=\frac{4}{5}-460
Tangohia te 460 mai i ngā taha e rua.
50x^{2}=-\frac{2296}{5}
Tangohia te 460 i te \frac{4}{5}, ka -\frac{2296}{5}.
x^{2}=\frac{-\frac{2296}{5}}{50}
Whakawehea ngā taha e rua ki te 50.
x^{2}=\frac{-2296}{5\times 50}
Tuhia te \frac{-\frac{2296}{5}}{50} hei hautanga kotahi.
x^{2}=\frac{-2296}{250}
Whakareatia te 5 ki te 50, ka 250.
x^{2}=-\frac{1148}{125}
Whakahekea te hautanga \frac{-2296}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
Kua oti te whārite te whakatau.
50x^{2}+545-85=\frac{80}{100}
Tāpirihia te 45 ki te 500, ka 545.
50x^{2}+460=\frac{80}{100}
Tangohia te 85 i te 545, ka 460.
50x^{2}+460=\frac{4}{5}
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
50x^{2}+460-\frac{4}{5}=0
Tangohia te \frac{4}{5} mai i ngā taha e rua.
50x^{2}+\frac{2296}{5}=0
Tangohia te \frac{4}{5} i te 460, ka \frac{2296}{5}.
x=\frac{0±\sqrt{0^{2}-4\times 50\times \frac{2296}{5}}}{2\times 50}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 50 mō a, 0 mō b, me \frac{2296}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 50\times \frac{2296}{5}}}{2\times 50}
Pūrua 0.
x=\frac{0±\sqrt{-200\times \frac{2296}{5}}}{2\times 50}
Whakareatia -4 ki te 50.
x=\frac{0±\sqrt{-91840}}{2\times 50}
Whakareatia -200 ki te \frac{2296}{5}.
x=\frac{0±8\sqrt{1435}i}{2\times 50}
Tuhia te pūtakerua o te -91840.
x=\frac{0±8\sqrt{1435}i}{100}
Whakareatia 2 ki te 50.
x=\frac{2\sqrt{1435}i}{25}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{1435}i}{100} ina he tāpiri te ±.
x=-\frac{2\sqrt{1435}i}{25}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{1435}i}{100} ina he tango te ±.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}