Whakaoti mō x
x=5\sqrt{43}-26\approx 6.787192622
x=-5\sqrt{43}-26\approx -58.787192622
Graph
Tohaina
Kua tāruatia ki te papatopenga
50+50x+\left(1+x\right)^{2}=450
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te 1+x.
50+50x+1+2x+x^{2}=450
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Tāpirihia te 50 ki te 1, ka 51.
51+52x+x^{2}=450
Pahekotia te 50x me 2x, ka 52x.
51+52x+x^{2}-450=0
Tangohia te 450 mai i ngā taha e rua.
-399+52x+x^{2}=0
Tangohia te 450 i te 51, ka -399.
x^{2}+52x-399=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-52±\sqrt{52^{2}-4\left(-399\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 52 mō b, me -399 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-399\right)}}{2}
Pūrua 52.
x=\frac{-52±\sqrt{2704+1596}}{2}
Whakareatia -4 ki te -399.
x=\frac{-52±\sqrt{4300}}{2}
Tāpiri 2704 ki te 1596.
x=\frac{-52±10\sqrt{43}}{2}
Tuhia te pūtakerua o te 4300.
x=\frac{10\sqrt{43}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±10\sqrt{43}}{2} ina he tāpiri te ±. Tāpiri -52 ki te 10\sqrt{43}.
x=5\sqrt{43}-26
Whakawehe -52+10\sqrt{43} ki te 2.
x=\frac{-10\sqrt{43}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±10\sqrt{43}}{2} ina he tango te ±. Tango 10\sqrt{43} mai i -52.
x=-5\sqrt{43}-26
Whakawehe -52-10\sqrt{43} ki te 2.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
Kua oti te whārite te whakatau.
50+50x+\left(1+x\right)^{2}=450
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te 1+x.
50+50x+1+2x+x^{2}=450
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Tāpirihia te 50 ki te 1, ka 51.
51+52x+x^{2}=450
Pahekotia te 50x me 2x, ka 52x.
52x+x^{2}=450-51
Tangohia te 51 mai i ngā taha e rua.
52x+x^{2}=399
Tangohia te 51 i te 450, ka 399.
x^{2}+52x=399
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+52x+26^{2}=399+26^{2}
Whakawehea te 52, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 26. Nā, tāpiria te pūrua o te 26 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+52x+676=399+676
Pūrua 26.
x^{2}+52x+676=1075
Tāpiri 399 ki te 676.
\left(x+26\right)^{2}=1075
Tauwehea x^{2}+52x+676. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{1075}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+26=5\sqrt{43} x+26=-5\sqrt{43}
Whakarūnātia.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
Me tango 26 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}