Whakaoti mō x (complex solution)
x=\frac{i\times 5\sqrt{4711}}{476}+\frac{5}{68}\approx 0.073529412+0.720974001i
x=-\frac{i\times 5\sqrt{4711}}{476}+\frac{5}{68}\approx 0.073529412-0.720974001i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
50 = 0.35 \times 40 x ( 1 - 0.85 \frac { 40 x } { 5 } )
Tohaina
Kua tāruatia ki te papatopenga
250=1.75\times 40x\left(1-0.85\times \frac{40x}{5}\right)
Whakareatia ngā taha e rua o te whārite ki te 5.
250=70x\left(1-0.85\times \frac{40x}{5}\right)
Whakareatia te 1.75 ki te 40, ka 70.
250=70x\left(1-0.85\times 8x\right)
Whakawehea te 40x ki te 5, kia riro ko 8x.
250=70x\left(1-6.8x\right)
Whakareatia te 0.85 ki te 8, ka 6.8.
250=70x-476x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 70x ki te 1-6.8x.
70x-476x^{2}=250
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
70x-476x^{2}-250=0
Tangohia te 250 mai i ngā taha e rua.
-476x^{2}+70x-250=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-70±\sqrt{70^{2}-4\left(-476\right)\left(-250\right)}}{2\left(-476\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -476 mō a, 70 mō b, me -250 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-476\right)\left(-250\right)}}{2\left(-476\right)}
Pūrua 70.
x=\frac{-70±\sqrt{4900+1904\left(-250\right)}}{2\left(-476\right)}
Whakareatia -4 ki te -476.
x=\frac{-70±\sqrt{4900-476000}}{2\left(-476\right)}
Whakareatia 1904 ki te -250.
x=\frac{-70±\sqrt{-471100}}{2\left(-476\right)}
Tāpiri 4900 ki te -476000.
x=\frac{-70±10\sqrt{4711}i}{2\left(-476\right)}
Tuhia te pūtakerua o te -471100.
x=\frac{-70±10\sqrt{4711}i}{-952}
Whakareatia 2 ki te -476.
x=\frac{-70+10\sqrt{4711}i}{-952}
Nā, me whakaoti te whārite x=\frac{-70±10\sqrt{4711}i}{-952} ina he tāpiri te ±. Tāpiri -70 ki te 10i\sqrt{4711}.
x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Whakawehe -70+10i\sqrt{4711} ki te -952.
x=\frac{-10\sqrt{4711}i-70}{-952}
Nā, me whakaoti te whārite x=\frac{-70±10\sqrt{4711}i}{-952} ina he tango te ±. Tango 10i\sqrt{4711} mai i -70.
x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Whakawehe -70-10i\sqrt{4711} ki te -952.
x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68} x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Kua oti te whārite te whakatau.
250=1.75\times 40x\left(1-0.85\times \frac{40x}{5}\right)
Whakareatia ngā taha e rua o te whārite ki te 5.
250=70x\left(1-0.85\times \frac{40x}{5}\right)
Whakareatia te 1.75 ki te 40, ka 70.
250=70x\left(1-0.85\times 8x\right)
Whakawehea te 40x ki te 5, kia riro ko 8x.
250=70x\left(1-6.8x\right)
Whakareatia te 0.85 ki te 8, ka 6.8.
250=70x-476x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 70x ki te 1-6.8x.
70x-476x^{2}=250
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-476x^{2}+70x=250
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-476x^{2}+70x}{-476}=\frac{250}{-476}
Whakawehea ngā taha e rua ki te -476.
x^{2}+\frac{70}{-476}x=\frac{250}{-476}
Mā te whakawehe ki te -476 ka wetekia te whakareanga ki te -476.
x^{2}-\frac{5}{34}x=\frac{250}{-476}
Whakahekea te hautanga \frac{70}{-476} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x^{2}-\frac{5}{34}x=-\frac{125}{238}
Whakahekea te hautanga \frac{250}{-476} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{5}{34}x+\left(-\frac{5}{68}\right)^{2}=-\frac{125}{238}+\left(-\frac{5}{68}\right)^{2}
Whakawehea te -\frac{5}{34}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{68}. Nā, tāpiria te pūrua o te -\frac{5}{68} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{34}x+\frac{25}{4624}=-\frac{125}{238}+\frac{25}{4624}
Pūruatia -\frac{5}{68} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{34}x+\frac{25}{4624}=-\frac{16825}{32368}
Tāpiri -\frac{125}{238} ki te \frac{25}{4624} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{68}\right)^{2}=-\frac{16825}{32368}
Tauwehea x^{2}-\frac{5}{34}x+\frac{25}{4624}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{68}\right)^{2}}=\sqrt{-\frac{16825}{32368}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{68}=\frac{5\sqrt{4711}i}{476} x-\frac{5}{68}=-\frac{5\sqrt{4711}i}{476}
Whakarūnātia.
x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68} x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Me tāpiri \frac{5}{68} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}