Aromātai
1.45
Tauwehe
\frac{29}{5 \cdot 2 ^ {2}} = 1\frac{9}{20} = 1.45
Tohaina
Kua tāruatia ki te papatopenga
1+0.3\times \frac{3}{2}
Tangohia te 4 i te 5, ka 1.
1+\frac{3}{10}\times \frac{3}{2}
Me tahuri ki tau ā-ira 0.3 ki te hautau \frac{3}{10}.
1+\frac{3\times 3}{10\times 2}
Me whakarea te \frac{3}{10} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1+\frac{9}{20}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 3}{10\times 2}.
\frac{20}{20}+\frac{9}{20}
Me tahuri te 1 ki te hautau \frac{20}{20}.
\frac{20+9}{20}
Tā te mea he rite te tauraro o \frac{20}{20} me \frac{9}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{20}
Tāpirihia te 20 ki te 9, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}