Whakaoti mō x
x=\frac{\sqrt{2}}{2}+2\approx 2.707106781
x=-\frac{\sqrt{2}}{2}+2\approx 1.292893219
Graph
Tohaina
Kua tāruatia ki te papatopenga
5-2x\left(x-1\right)=12-4x-2x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3-x.
5-2x\left(x-1\right)=12-6x
Pahekotia te -4x me -2x, ka -6x.
5-2x\left(x-1\right)-12=-6x
Tangohia te 12 mai i ngā taha e rua.
5-2x\left(x-1\right)-12+6x=0
Me tāpiri te 6x ki ngā taha e rua.
5-2x\left(x-1\right)+6x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5-2x\left(x-1\right)+6x-12=0
Tangohia te 12 mai i ngā taha e rua.
5-2x^{2}+2x+6x-12=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x-1.
5-2x^{2}+8x-12=0
Pahekotia te 2x me 6x, ka 8x.
-7-2x^{2}+8x=0
Tangohia te 12 i te 5, ka -7.
-2x^{2}+8x-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 8 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+8\left(-7\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-8±\sqrt{64-56}}{2\left(-2\right)}
Whakareatia 8 ki te -7.
x=\frac{-8±\sqrt{8}}{2\left(-2\right)}
Tāpiri 64 ki te -56.
x=\frac{-8±2\sqrt{2}}{2\left(-2\right)}
Tuhia te pūtakerua o te 8.
x=\frac{-8±2\sqrt{2}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{2}-8}{-4}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{2}}{-4} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{2}.
x=-\frac{\sqrt{2}}{2}+2
Whakawehe 2\sqrt{2}-8 ki te -4.
x=\frac{-2\sqrt{2}-8}{-4}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{2}}{-4} ina he tango te ±. Tango 2\sqrt{2} mai i -8.
x=\frac{\sqrt{2}}{2}+2
Whakawehe -8-2\sqrt{2} ki te -4.
x=-\frac{\sqrt{2}}{2}+2 x=\frac{\sqrt{2}}{2}+2
Kua oti te whārite te whakatau.
5-2x\left(x-1\right)=12-4x-2x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3-x.
5-2x\left(x-1\right)=12-6x
Pahekotia te -4x me -2x, ka -6x.
5-2x\left(x-1\right)+6x=12
Me tāpiri te 6x ki ngā taha e rua.
5-2x^{2}+2x+6x=12
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x-1.
5-2x^{2}+8x=12
Pahekotia te 2x me 6x, ka 8x.
-2x^{2}+8x=12-5
Tangohia te 5 mai i ngā taha e rua.
-2x^{2}+8x=7
Tangohia te 5 i te 12, ka 7.
\frac{-2x^{2}+8x}{-2}=\frac{7}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{8}{-2}x=\frac{7}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-4x=\frac{7}{-2}
Whakawehe 8 ki te -2.
x^{2}-4x=-\frac{7}{2}
Whakawehe 7 ki te -2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{7}{2}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-\frac{7}{2}+4
Pūrua -2.
x^{2}-4x+4=\frac{1}{2}
Tāpiri -\frac{7}{2} ki te 4.
\left(x-2\right)^{2}=\frac{1}{2}
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\frac{\sqrt{2}}{2} x-2=-\frac{\sqrt{2}}{2}
Whakarūnātia.
x=\frac{\sqrt{2}}{2}+2 x=-\frac{\sqrt{2}}{2}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}