Whakaoti mō x (complex solution)
x=\frac{-\sqrt{19}i+3}{2}\approx 1.5-2.179449472i
x=\frac{3+\sqrt{19}i}{2}\approx 1.5+2.179449472i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+3x+5=12
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}+3x+5-12=12-12
Me tango 12 mai i ngā taha e rua o te whārite.
-x^{2}+3x+5-12=0
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
-x^{2}+3x-7=0
Tango 12 mai i 5.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
Whakareatia 4 ki te -7.
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
Tāpiri 9 ki te -28.
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -19.
x=\frac{-3±\sqrt{19}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-3+\sqrt{19}i}{-2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{19}i}{-2} ina he tāpiri te ±. Tāpiri -3 ki te i\sqrt{19}.
x=\frac{-\sqrt{19}i+3}{2}
Whakawehe -3+i\sqrt{19} ki te -2.
x=\frac{-\sqrt{19}i-3}{-2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{19}i}{-2} ina he tango te ±. Tango i\sqrt{19} mai i -3.
x=\frac{3+\sqrt{19}i}{2}
Whakawehe -3-i\sqrt{19} ki te -2.
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
Kua oti te whārite te whakatau.
-x^{2}+3x+5=12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+3x+5-5=12-5
Me tango 5 mai i ngā taha e rua o te whārite.
-x^{2}+3x=12-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
-x^{2}+3x=7
Tango 5 mai i 12.
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-3x=\frac{7}{-1}
Whakawehe 3 ki te -1.
x^{2}-3x=-7
Whakawehe 7 ki te -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
Tāpiri -7 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
Whakarūnātia.
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}