Whakaoti mō x
x=-19
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
5- \frac{ 2 }{ 5 } (x+24)=- \frac{ 3 }{ 4 } (15+x)
Tohaina
Kua tāruatia ki te papatopenga
5-\frac{2}{5}x-\frac{2}{5}\times 24=-\frac{3}{4}\left(15+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{2}{5} ki te x+24.
5-\frac{2}{5}x+\frac{-2\times 24}{5}=-\frac{3}{4}\left(15+x\right)
Tuhia te -\frac{2}{5}\times 24 hei hautanga kotahi.
5-\frac{2}{5}x+\frac{-48}{5}=-\frac{3}{4}\left(15+x\right)
Whakareatia te -2 ki te 24, ka -48.
5-\frac{2}{5}x-\frac{48}{5}=-\frac{3}{4}\left(15+x\right)
Ka taea te hautanga \frac{-48}{5} te tuhi anō ko -\frac{48}{5} mā te tango i te tohu tōraro.
\frac{25}{5}-\frac{2}{5}x-\frac{48}{5}=-\frac{3}{4}\left(15+x\right)
Me tahuri te 5 ki te hautau \frac{25}{5}.
\frac{25-48}{5}-\frac{2}{5}x=-\frac{3}{4}\left(15+x\right)
Tā te mea he rite te tauraro o \frac{25}{5} me \frac{48}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{23}{5}-\frac{2}{5}x=-\frac{3}{4}\left(15+x\right)
Tangohia te 48 i te 25, ka -23.
-\frac{23}{5}-\frac{2}{5}x=-\frac{3}{4}\times 15-\frac{3}{4}x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{4} ki te 15+x.
-\frac{23}{5}-\frac{2}{5}x=\frac{-3\times 15}{4}-\frac{3}{4}x
Tuhia te -\frac{3}{4}\times 15 hei hautanga kotahi.
-\frac{23}{5}-\frac{2}{5}x=\frac{-45}{4}-\frac{3}{4}x
Whakareatia te -3 ki te 15, ka -45.
-\frac{23}{5}-\frac{2}{5}x=-\frac{45}{4}-\frac{3}{4}x
Ka taea te hautanga \frac{-45}{4} te tuhi anō ko -\frac{45}{4} mā te tango i te tohu tōraro.
-\frac{23}{5}-\frac{2}{5}x+\frac{3}{4}x=-\frac{45}{4}
Me tāpiri te \frac{3}{4}x ki ngā taha e rua.
-\frac{23}{5}+\frac{7}{20}x=-\frac{45}{4}
Pahekotia te -\frac{2}{5}x me \frac{3}{4}x, ka \frac{7}{20}x.
\frac{7}{20}x=-\frac{45}{4}+\frac{23}{5}
Me tāpiri te \frac{23}{5} ki ngā taha e rua.
\frac{7}{20}x=-\frac{225}{20}+\frac{92}{20}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri -\frac{45}{4} me \frac{23}{5} ki te hautau me te tautūnga 20.
\frac{7}{20}x=\frac{-225+92}{20}
Tā te mea he rite te tauraro o -\frac{225}{20} me \frac{92}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{20}x=-\frac{133}{20}
Tāpirihia te -225 ki te 92, ka -133.
x=-\frac{133}{20}\times \frac{20}{7}
Me whakarea ngā taha e rua ki te \frac{20}{7}, te tau utu o \frac{7}{20}.
x=\frac{-133\times 20}{20\times 7}
Me whakarea te -\frac{133}{20} ki te \frac{20}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-133}{7}
Me whakakore tahi te 20 i te taurunga me te tauraro.
x=-19
Whakawehea te -133 ki te 7, kia riro ko -19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}