Whakaoti mō x
x = -\frac{12}{5} = -2\frac{2}{5} = -2.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+15=3\left(5x+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x+3.
10x+15=15x+27
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x+9.
10x+15-15x=27
Tangohia te 15x mai i ngā taha e rua.
-5x+15=27
Pahekotia te 10x me -15x, ka -5x.
-5x=27-15
Tangohia te 15 mai i ngā taha e rua.
-5x=12
Tangohia te 15 i te 27, ka 12.
x=\frac{12}{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{12}{5}
Ka taea te hautanga \frac{12}{-5} te tuhi anō ko -\frac{12}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}