Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
-25-4-70-19=18\left(-5\right)+7\left(-5\right)-16+23
Whakareatia te 5 ki te -5, ka -25. Whakareatia te 14 ki te -5, ka -70.
-29-70-19=18\left(-5\right)+7\left(-5\right)-16+23
Tangohia te 4 i te -25, ka -29.
-99-19=18\left(-5\right)+7\left(-5\right)-16+23
Tangohia te 70 i te -29, ka -99.
-118=18\left(-5\right)+7\left(-5\right)-16+23
Tangohia te 19 i te -99, ka -118.
-118=-90-35-16+23
Whakareatia te 18 ki te -5, ka -90. Whakareatia te 7 ki te -5, ka -35.
-118=-125-16+23
Tangohia te 35 i te -90, ka -125.
-118=-141+23
Tangohia te 16 i te -125, ka -141.
-118=-118
Tāpirihia te -141 ki te 23, ka -118.
\text{true}
Whakatauritea te -118 me te -118.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}