Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
5+14-35x=2\left(9x+1\right)-\left(13x-57\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 2-5x.
19-35x=2\left(9x+1\right)-\left(13x-57\right)
Tāpirihia te 5 ki te 14, ka 19.
19-35x=18x+2-\left(13x-57\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x+1.
19-35x=18x+2-13x-\left(-57\right)
Hei kimi i te tauaro o 13x-57, kimihia te tauaro o ia taurangi.
19-35x=18x+2-13x+57
Ko te tauaro o -57 ko 57.
19-35x=5x+2+57
Pahekotia te 18x me -13x, ka 5x.
19-35x=5x+59
Tāpirihia te 2 ki te 57, ka 59.
19-35x-5x=59
Tangohia te 5x mai i ngā taha e rua.
19-40x=59
Pahekotia te -35x me -5x, ka -40x.
-40x=59-19
Tangohia te 19 mai i ngā taha e rua.
-40x=40
Tangohia te 19 i te 59, ka 40.
x=\frac{40}{-40}
Whakawehea ngā taha e rua ki te -40.
x=-1
Whakawehea te 40 ki te -40, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}