Whakaoti mō z
z=2
z=3
Tohaina
Kua tāruatia ki te papatopenga
5z^{2}-25z=-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5z ki te z-5.
5z^{2}-25z+30=0
Me tāpiri te 30 ki ngā taha e rua.
z=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\times 30}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -25 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-25\right)±\sqrt{625-4\times 5\times 30}}{2\times 5}
Pūrua -25.
z=\frac{-\left(-25\right)±\sqrt{625-20\times 30}}{2\times 5}
Whakareatia -4 ki te 5.
z=\frac{-\left(-25\right)±\sqrt{625-600}}{2\times 5}
Whakareatia -20 ki te 30.
z=\frac{-\left(-25\right)±\sqrt{25}}{2\times 5}
Tāpiri 625 ki te -600.
z=\frac{-\left(-25\right)±5}{2\times 5}
Tuhia te pūtakerua o te 25.
z=\frac{25±5}{2\times 5}
Ko te tauaro o -25 ko 25.
z=\frac{25±5}{10}
Whakareatia 2 ki te 5.
z=\frac{30}{10}
Nā, me whakaoti te whārite z=\frac{25±5}{10} ina he tāpiri te ±. Tāpiri 25 ki te 5.
z=3
Whakawehe 30 ki te 10.
z=\frac{20}{10}
Nā, me whakaoti te whārite z=\frac{25±5}{10} ina he tango te ±. Tango 5 mai i 25.
z=2
Whakawehe 20 ki te 10.
z=3 z=2
Kua oti te whārite te whakatau.
5z^{2}-25z=-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5z ki te z-5.
\frac{5z^{2}-25z}{5}=-\frac{30}{5}
Whakawehea ngā taha e rua ki te 5.
z^{2}+\left(-\frac{25}{5}\right)z=-\frac{30}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
z^{2}-5z=-\frac{30}{5}
Whakawehe -25 ki te 5.
z^{2}-5z=-6
Whakawehe -30 ki te 5.
z^{2}-5z+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-5z+\frac{25}{4}=-6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}-5z+\frac{25}{4}=\frac{1}{4}
Tāpiri -6 ki te \frac{25}{4}.
\left(z-\frac{5}{2}\right)^{2}=\frac{1}{4}
Tauwehea z^{2}-5z+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{5}{2}=\frac{1}{2} z-\frac{5}{2}=-\frac{1}{2}
Whakarūnātia.
z=3 z=2
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}