Tauwehe
\left(z-6\right)\left(5z-3\right)
Aromātai
\left(z-6\right)\left(5z-3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-33 ab=5\times 18=90
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5z^{2}+az+bz+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Tātaihia te tapeke mō ia takirua.
a=-30 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -33.
\left(5z^{2}-30z\right)+\left(-3z+18\right)
Tuhia anō te 5z^{2}-33z+18 hei \left(5z^{2}-30z\right)+\left(-3z+18\right).
5z\left(z-6\right)-3\left(z-6\right)
Tauwehea te 5z i te tuatahi me te -3 i te rōpū tuarua.
\left(z-6\right)\left(5z-3\right)
Whakatauwehea atu te kīanga pātahi z-6 mā te whakamahi i te āhuatanga tātai tohatoha.
5z^{2}-33z+18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 5\times 18}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-33\right)±\sqrt{1089-4\times 5\times 18}}{2\times 5}
Pūrua -33.
z=\frac{-\left(-33\right)±\sqrt{1089-20\times 18}}{2\times 5}
Whakareatia -4 ki te 5.
z=\frac{-\left(-33\right)±\sqrt{1089-360}}{2\times 5}
Whakareatia -20 ki te 18.
z=\frac{-\left(-33\right)±\sqrt{729}}{2\times 5}
Tāpiri 1089 ki te -360.
z=\frac{-\left(-33\right)±27}{2\times 5}
Tuhia te pūtakerua o te 729.
z=\frac{33±27}{2\times 5}
Ko te tauaro o -33 ko 33.
z=\frac{33±27}{10}
Whakareatia 2 ki te 5.
z=\frac{60}{10}
Nā, me whakaoti te whārite z=\frac{33±27}{10} ina he tāpiri te ±. Tāpiri 33 ki te 27.
z=6
Whakawehe 60 ki te 10.
z=\frac{6}{10}
Nā, me whakaoti te whārite z=\frac{33±27}{10} ina he tango te ±. Tango 27 mai i 33.
z=\frac{3}{5}
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5z^{2}-33z+18=5\left(z-6\right)\left(z-\frac{3}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te \frac{3}{5} mō te x_{2}.
5z^{2}-33z+18=5\left(z-6\right)\times \frac{5z-3}{5}
Tango \frac{3}{5} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5z^{2}-33z+18=\left(z-6\right)\left(5z-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}