Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\left(y^{2}-2y\right)
Tauwehea te 5.
y\left(y-2\right)
Whakaarohia te y^{2}-2y. Tauwehea te y.
5y\left(y-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
5y^{2}-10y=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-10\right)±10}{2\times 5}
Tuhia te pūtakerua o te \left(-10\right)^{2}.
y=\frac{10±10}{2\times 5}
Ko te tauaro o -10 ko 10.
y=\frac{10±10}{10}
Whakareatia 2 ki te 5.
y=\frac{20}{10}
Nā, me whakaoti te whārite y=\frac{10±10}{10} ina he tāpiri te ±. Tāpiri 10 ki te 10.
y=2
Whakawehe 20 ki te 10.
y=\frac{0}{10}
Nā, me whakaoti te whārite y=\frac{10±10}{10} ina he tango te ±. Tango 10 mai i 10.
y=0
Whakawehe 0 ki te 10.
5y^{2}-10y=5\left(y-2\right)y
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 0 mō te x_{2}.