Aromātai
13y+12
Whakaroha
13y+12
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
5 y ^ { 2 } - ( y - 2 ) ( 3 y + 1 ) - 2 ( y + 1 ) ( y - 5 )
Tohaina
Kua tāruatia ki te papatopenga
5y^{2}-\left(3y^{2}-5y-2\right)-2\left(y+1\right)\left(y-5\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te y-2 ki te 3y+1 ka whakakotahi i ngā kupu rite.
5y^{2}-3y^{2}+5y+2-2\left(y+1\right)\left(y-5\right)
Hei kimi i te tauaro o 3y^{2}-5y-2, kimihia te tauaro o ia taurangi.
2y^{2}+5y+2-2\left(y+1\right)\left(y-5\right)
Pahekotia te 5y^{2} me -3y^{2}, ka 2y^{2}.
2y^{2}+5y+2+\left(-2y-2\right)\left(y-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+1.
2y^{2}+5y+2-2y^{2}+8y+10
Whakamahia te āhuatanga tuaritanga hei whakarea te -2y-2 ki te y-5 ka whakakotahi i ngā kupu rite.
5y+2+8y+10
Pahekotia te 2y^{2} me -2y^{2}, ka 0.
13y+2+10
Pahekotia te 5y me 8y, ka 13y.
13y+12
Tāpirihia te 2 ki te 10, ka 12.
5y^{2}-\left(3y^{2}-5y-2\right)-2\left(y+1\right)\left(y-5\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te y-2 ki te 3y+1 ka whakakotahi i ngā kupu rite.
5y^{2}-3y^{2}+5y+2-2\left(y+1\right)\left(y-5\right)
Hei kimi i te tauaro o 3y^{2}-5y-2, kimihia te tauaro o ia taurangi.
2y^{2}+5y+2-2\left(y+1\right)\left(y-5\right)
Pahekotia te 5y^{2} me -3y^{2}, ka 2y^{2}.
2y^{2}+5y+2+\left(-2y-2\right)\left(y-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+1.
2y^{2}+5y+2-2y^{2}+8y+10
Whakamahia te āhuatanga tuaritanga hei whakarea te -2y-2 ki te y-5 ka whakakotahi i ngā kupu rite.
5y+2+8y+10
Pahekotia te 2y^{2} me -2y^{2}, ka 0.
13y+2+10
Pahekotia te 5y me 8y, ka 13y.
13y+12
Tāpirihia te 2 ki te 10, ka 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}