Tauwehe
\left(y-1\right)\left(5y+14\right)
Aromātai
\left(y-1\right)\left(5y+14\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=9 ab=5\left(-14\right)=-70
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5y^{2}+ay+by-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,70 -2,35 -5,14 -7,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -70.
-1+70=69 -2+35=33 -5+14=9 -7+10=3
Tātaihia te tapeke mō ia takirua.
a=-5 b=14
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(5y^{2}-5y\right)+\left(14y-14\right)
Tuhia anō te 5y^{2}+9y-14 hei \left(5y^{2}-5y\right)+\left(14y-14\right).
5y\left(y-1\right)+14\left(y-1\right)
Tauwehea te 5y i te tuatahi me te 14 i te rōpū tuarua.
\left(y-1\right)\left(5y+14\right)
Whakatauwehea atu te kīanga pātahi y-1 mā te whakamahi i te āhuatanga tātai tohatoha.
5y^{2}+9y-14=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-9±\sqrt{9^{2}-4\times 5\left(-14\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-9±\sqrt{81-4\times 5\left(-14\right)}}{2\times 5}
Pūrua 9.
y=\frac{-9±\sqrt{81-20\left(-14\right)}}{2\times 5}
Whakareatia -4 ki te 5.
y=\frac{-9±\sqrt{81+280}}{2\times 5}
Whakareatia -20 ki te -14.
y=\frac{-9±\sqrt{361}}{2\times 5}
Tāpiri 81 ki te 280.
y=\frac{-9±19}{2\times 5}
Tuhia te pūtakerua o te 361.
y=\frac{-9±19}{10}
Whakareatia 2 ki te 5.
y=\frac{10}{10}
Nā, me whakaoti te whārite y=\frac{-9±19}{10} ina he tāpiri te ±. Tāpiri -9 ki te 19.
y=1
Whakawehe 10 ki te 10.
y=-\frac{28}{10}
Nā, me whakaoti te whārite y=\frac{-9±19}{10} ina he tango te ±. Tango 19 mai i -9.
y=-\frac{14}{5}
Whakahekea te hautanga \frac{-28}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5y^{2}+9y-14=5\left(y-1\right)\left(y-\left(-\frac{14}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{14}{5} mō te x_{2}.
5y^{2}+9y-14=5\left(y-1\right)\left(y+\frac{14}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
5y^{2}+9y-14=5\left(y-1\right)\times \frac{5y+14}{5}
Tāpiri \frac{14}{5} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5y^{2}+9y-14=\left(y-1\right)\left(5y+14\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}