Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5y^{2}=8-1
Tangohia te 1 mai i ngā taha e rua.
5y^{2}=7
Tangohia te 1 i te 8, ka 7.
y^{2}=\frac{7}{5}
Whakawehea ngā taha e rua ki te 5.
y=\frac{\sqrt{35}}{5} y=-\frac{\sqrt{35}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5y^{2}+1-8=0
Tangohia te 8 mai i ngā taha e rua.
5y^{2}-7=0
Tangohia te 8 i te 1, ka -7.
y=\frac{0±\sqrt{0^{2}-4\times 5\left(-7\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 5\left(-7\right)}}{2\times 5}
Pūrua 0.
y=\frac{0±\sqrt{-20\left(-7\right)}}{2\times 5}
Whakareatia -4 ki te 5.
y=\frac{0±\sqrt{140}}{2\times 5}
Whakareatia -20 ki te -7.
y=\frac{0±2\sqrt{35}}{2\times 5}
Tuhia te pūtakerua o te 140.
y=\frac{0±2\sqrt{35}}{10}
Whakareatia 2 ki te 5.
y=\frac{\sqrt{35}}{5}
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{35}}{10} ina he tāpiri te ±.
y=-\frac{\sqrt{35}}{5}
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{35}}{10} ina he tango te ±.
y=\frac{\sqrt{35}}{5} y=-\frac{\sqrt{35}}{5}
Kua oti te whārite te whakatau.