Aromātai
\frac{x_{3}}{8}
Kimi Pārōnaki e ai ki x_3
\frac{1}{8} = 0.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{5x_{3}}{28+3\times 4}
Tāpirihia te 3 ki te 25, ka 28.
\frac{5x_{3}}{28+12}
Whakareatia te 3 ki te 4, ka 12.
\frac{5x_{3}}{40}
Tāpirihia te 28 ki te 12, ka 40.
\frac{1}{8}x_{3}
Whakawehea te 5x_{3} ki te 40, kia riro ko \frac{1}{8}x_{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{28+3\times 4})
Tāpirihia te 3 ki te 25, ka 28.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{28+12})
Whakareatia te 3 ki te 4, ka 12.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{40})
Tāpirihia te 28 ki te 12, ka 40.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{1}{8}x_{3})
Whakawehea te 5x_{3} ki te 40, kia riro ko \frac{1}{8}x_{3}.
\frac{1}{8}x_{3}^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{8}x_{3}^{0}
Tango 1 mai i 1.
\frac{1}{8}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{8}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}