Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x_3
Tick mark Image

Tohaina

\frac{5x_{3}}{28+3\times 4}
Tāpirihia te 3 ki te 25, ka 28.
\frac{5x_{3}}{28+12}
Whakareatia te 3 ki te 4, ka 12.
\frac{5x_{3}}{40}
Tāpirihia te 28 ki te 12, ka 40.
\frac{1}{8}x_{3}
Whakawehea te 5x_{3} ki te 40, kia riro ko \frac{1}{8}x_{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{28+3\times 4})
Tāpirihia te 3 ki te 25, ka 28.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{28+12})
Whakareatia te 3 ki te 4, ka 12.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{5x_{3}}{40})
Tāpirihia te 28 ki te 12, ka 40.
\frac{\mathrm{d}}{\mathrm{d}x_{3}}(\frac{1}{8}x_{3})
Whakawehea te 5x_{3} ki te 40, kia riro ko \frac{1}{8}x_{3}.
\frac{1}{8}x_{3}^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{8}x_{3}^{0}
Tango 1 mai i 1.
\frac{1}{8}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{8}
Mō tētahi kupu t, t\times 1=t me 1t=t.