Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}-5x-3>2x-x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-1.
5x^{2}-5x-3>x
Pahekotia te 2x me -x, ka x.
5x^{2}-5x-3-x>0
Tangohia te x mai i ngā taha e rua.
5x^{2}-6x-3>0
Pahekotia te -5x me -x, ka -6x.
5x^{2}-6x-3=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te -6 mō te b, me te -3 mō te c i te ture pūrua.
x=\frac{6±4\sqrt{6}}{10}
Mahia ngā tātaitai.
x=\frac{2\sqrt{6}+3}{5} x=\frac{3-2\sqrt{6}}{5}
Whakaotia te whārite x=\frac{6±4\sqrt{6}}{10} ina he tōrunga te ±, ina he tōraro te ±.
5\left(x-\frac{2\sqrt{6}+3}{5}\right)\left(x-\frac{3-2\sqrt{6}}{5}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{2\sqrt{6}+3}{5}<0 x-\frac{3-2\sqrt{6}}{5}<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{2\sqrt{6}+3}{5} me te x-\frac{3-2\sqrt{6}}{5}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{2\sqrt{6}+3}{5} me te x-\frac{3-2\sqrt{6}}{5}.
x<\frac{3-2\sqrt{6}}{5}
Te otinga e whakaea i ngā koreōrite e rua ko x<\frac{3-2\sqrt{6}}{5}.
x-\frac{3-2\sqrt{6}}{5}>0 x-\frac{2\sqrt{6}+3}{5}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{2\sqrt{6}+3}{5} me te x-\frac{3-2\sqrt{6}}{5}.
x>\frac{2\sqrt{6}+3}{5}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{2\sqrt{6}+3}{5}.
x<\frac{3-2\sqrt{6}}{5}\text{; }x>\frac{2\sqrt{6}+3}{5}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.