Whakaoti mō x (complex solution)
x=-3+i
x=-3-i
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}+30x=-50
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+6.
5x^{2}+30x+50=0
Me tāpiri te 50 ki ngā taha e rua.
x=\frac{-30±\sqrt{30^{2}-4\times 5\times 50}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 30 mō b, me 50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 5\times 50}}{2\times 5}
Pūrua 30.
x=\frac{-30±\sqrt{900-20\times 50}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-30±\sqrt{900-1000}}{2\times 5}
Whakareatia -20 ki te 50.
x=\frac{-30±\sqrt{-100}}{2\times 5}
Tāpiri 900 ki te -1000.
x=\frac{-30±10i}{2\times 5}
Tuhia te pūtakerua o te -100.
x=\frac{-30±10i}{10}
Whakareatia 2 ki te 5.
x=\frac{-30+10i}{10}
Nā, me whakaoti te whārite x=\frac{-30±10i}{10} ina he tāpiri te ±. Tāpiri -30 ki te 10i.
x=-3+i
Whakawehe -30+10i ki te 10.
x=\frac{-30-10i}{10}
Nā, me whakaoti te whārite x=\frac{-30±10i}{10} ina he tango te ±. Tango 10i mai i -30.
x=-3-i
Whakawehe -30-10i ki te 10.
x=-3+i x=-3-i
Kua oti te whārite te whakatau.
5x^{2}+30x=-50
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+6.
\frac{5x^{2}+30x}{5}=-\frac{50}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{30}{5}x=-\frac{50}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+6x=-\frac{50}{5}
Whakawehe 30 ki te 5.
x^{2}+6x=-10
Whakawehe -50 ki te 5.
x^{2}+6x+3^{2}=-10+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=-10+9
Pūrua 3.
x^{2}+6x+9=-1
Tāpiri -10 ki te 9.
\left(x+3\right)^{2}=-1
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=i x+3=-i
Whakarūnātia.
x=-3+i x=-3-i
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}