Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+15x=3\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+3.
5x^{2}+15x=3x+9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
5x^{2}+15x-3x=9
Tangohia te 3x mai i ngā taha e rua.
5x^{2}+12x=9
Pahekotia te 15x me -3x, ka 12x.
5x^{2}+12x-9=0
Tangohia te 9 mai i ngā taha e rua.
x=\frac{-12±\sqrt{12^{2}-4\times 5\left(-9\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 12 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\left(-9\right)}}{2\times 5}
Pūrua 12.
x=\frac{-12±\sqrt{144-20\left(-9\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-12±\sqrt{144+180}}{2\times 5}
Whakareatia -20 ki te -9.
x=\frac{-12±\sqrt{324}}{2\times 5}
Tāpiri 144 ki te 180.
x=\frac{-12±18}{2\times 5}
Tuhia te pūtakerua o te 324.
x=\frac{-12±18}{10}
Whakareatia 2 ki te 5.
x=\frac{6}{10}
Nā, me whakaoti te whārite x=\frac{-12±18}{10} ina he tāpiri te ±. Tāpiri -12 ki te 18.
x=\frac{3}{5}
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{30}{10}
Nā, me whakaoti te whārite x=\frac{-12±18}{10} ina he tango te ±. Tango 18 mai i -12.
x=-3
Whakawehe -30 ki te 10.
x=\frac{3}{5} x=-3
Kua oti te whārite te whakatau.
5x^{2}+15x=3\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+3.
5x^{2}+15x=3x+9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
5x^{2}+15x-3x=9
Tangohia te 3x mai i ngā taha e rua.
5x^{2}+12x=9
Pahekotia te 15x me -3x, ka 12x.
\frac{5x^{2}+12x}{5}=\frac{9}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{12}{5}x=\frac{9}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=\frac{9}{5}+\left(\frac{6}{5}\right)^{2}
Whakawehea te \frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{5}. Nā, tāpiria te pūrua o te \frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{9}{5}+\frac{36}{25}
Pūruatia \frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{81}{25}
Tāpiri \frac{9}{5} ki te \frac{36}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{6}{5}\right)^{2}=\frac{81}{25}
Tauwehea x^{2}+\frac{12}{5}x+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{6}{5}=\frac{9}{5} x+\frac{6}{5}=-\frac{9}{5}
Whakarūnātia.
x=\frac{3}{5} x=-3
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.