Whakaoti mō x
x=\frac{1}{30}\approx 0.033333333
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}\times 6=x
Whakareatia te x ki te x, ka x^{2}.
30x^{2}=x
Whakareatia te 5 ki te 6, ka 30.
30x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
x\left(30x-1\right)=0
Tauwehea te x.
x=0 x=\frac{1}{30}
Hei kimi otinga whārite, me whakaoti te x=0 me te 30x-1=0.
5x^{2}\times 6=x
Whakareatia te x ki te x, ka x^{2}.
30x^{2}=x
Whakareatia te 5 ki te 6, ka 30.
30x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 30}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 30 mō a, -1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times 30}
Tuhia te pūtakerua o te 1.
x=\frac{1±1}{2\times 30}
Ko te tauaro o -1 ko 1.
x=\frac{1±1}{60}
Whakareatia 2 ki te 30.
x=\frac{2}{60}
Nā, me whakaoti te whārite x=\frac{1±1}{60} ina he tāpiri te ±. Tāpiri 1 ki te 1.
x=\frac{1}{30}
Whakahekea te hautanga \frac{2}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{60}
Nā, me whakaoti te whārite x=\frac{1±1}{60} ina he tango te ±. Tango 1 mai i 1.
x=0
Whakawehe 0 ki te 60.
x=\frac{1}{30} x=0
Kua oti te whārite te whakatau.
5x^{2}\times 6=x
Whakareatia te x ki te x, ka x^{2}.
30x^{2}=x
Whakareatia te 5 ki te 6, ka 30.
30x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{30x^{2}-x}{30}=\frac{0}{30}
Whakawehea ngā taha e rua ki te 30.
x^{2}-\frac{1}{30}x=\frac{0}{30}
Mā te whakawehe ki te 30 ka wetekia te whakareanga ki te 30.
x^{2}-\frac{1}{30}x=0
Whakawehe 0 ki te 30.
x^{2}-\frac{1}{30}x+\left(-\frac{1}{60}\right)^{2}=\left(-\frac{1}{60}\right)^{2}
Whakawehea te -\frac{1}{30}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{60}. Nā, tāpiria te pūrua o te -\frac{1}{60} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{30}x+\frac{1}{3600}=\frac{1}{3600}
Pūruatia -\frac{1}{60} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{60}\right)^{2}=\frac{1}{3600}
Tauwehea x^{2}-\frac{1}{30}x+\frac{1}{3600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{60}\right)^{2}}=\sqrt{\frac{1}{3600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{60}=\frac{1}{60} x-\frac{1}{60}=-\frac{1}{60}
Whakarūnātia.
x=\frac{1}{30} x=0
Me tāpiri \frac{1}{60} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}