Whakaoti mō x
x=-1
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-5x-30+20=0
Me tāpiri te 20 ki ngā taha e rua.
5x^{2}-5x-10=0
Tāpirihia te -30 ki te 20, ka -10.
x^{2}-x-2=0
Whakawehea ngā taha e rua ki te 5.
a+b=-1 ab=1\left(-2\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-2x\right)+\left(x-2\right)
Tuhia anō te x^{2}-x-2 hei \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Whakatauwehea atu x i te x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+1=0.
5x^{2}-5x-30=-20
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
5x^{2}-5x-30-\left(-20\right)=-20-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
5x^{2}-5x-30-\left(-20\right)=0
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
5x^{2}-5x-10=0
Tango -20 mai i -30.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-10\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -5 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\left(-10\right)}}{2\times 5}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\left(-10\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-5\right)±\sqrt{25+200}}{2\times 5}
Whakareatia -20 ki te -10.
x=\frac{-\left(-5\right)±\sqrt{225}}{2\times 5}
Tāpiri 25 ki te 200.
x=\frac{-\left(-5\right)±15}{2\times 5}
Tuhia te pūtakerua o te 225.
x=\frac{5±15}{2\times 5}
Ko te tauaro o -5 ko 5.
x=\frac{5±15}{10}
Whakareatia 2 ki te 5.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{5±15}{10} ina he tāpiri te ±. Tāpiri 5 ki te 15.
x=2
Whakawehe 20 ki te 10.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{5±15}{10} ina he tango te ±. Tango 15 mai i 5.
x=-1
Whakawehe -10 ki te 10.
x=2 x=-1
Kua oti te whārite te whakatau.
5x^{2}-5x-30=-20
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-5x-30-\left(-30\right)=-20-\left(-30\right)
Me tāpiri 30 ki ngā taha e rua o te whārite.
5x^{2}-5x=-20-\left(-30\right)
Mā te tango i te -30 i a ia ake anō ka toe ko te 0.
5x^{2}-5x=10
Tango -30 mai i -20.
\frac{5x^{2}-5x}{5}=\frac{10}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{5}{5}\right)x=\frac{10}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-x=\frac{10}{5}
Whakawehe -5 ki te 5.
x^{2}-x=2
Whakawehe 10 ki te 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
x=2 x=-1
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}