Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}-5x-17=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-17\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -5 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\left(-17\right)}}{2\times 5}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\left(-17\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-5\right)±\sqrt{25+340}}{2\times 5}
Whakareatia -20 ki te -17.
x=\frac{-\left(-5\right)±\sqrt{365}}{2\times 5}
Tāpiri 25 ki te 340.
x=\frac{5±\sqrt{365}}{2\times 5}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{365}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{365}+5}{10}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{365}}{10} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{365}.
x=\frac{\sqrt{365}}{10}+\frac{1}{2}
Whakawehe 5+\sqrt{365} ki te 10.
x=\frac{5-\sqrt{365}}{10}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{365}}{10} ina he tango te ±. Tango \sqrt{365} mai i 5.
x=-\frac{\sqrt{365}}{10}+\frac{1}{2}
Whakawehe 5-\sqrt{365} ki te 10.
x=\frac{\sqrt{365}}{10}+\frac{1}{2} x=-\frac{\sqrt{365}}{10}+\frac{1}{2}
Kua oti te whārite te whakatau.
5x^{2}-5x-17=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-5x-17-\left(-17\right)=-\left(-17\right)
Me tāpiri 17 ki ngā taha e rua o te whārite.
5x^{2}-5x=-\left(-17\right)
Mā te tango i te -17 i a ia ake anō ka toe ko te 0.
5x^{2}-5x=17
Tango -17 mai i 0.
\frac{5x^{2}-5x}{5}=\frac{17}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{5}{5}\right)x=\frac{17}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-x=\frac{17}{5}
Whakawehe -5 ki te 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{17}{5}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{17}{5}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{73}{20}
Tāpiri \frac{17}{5} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{73}{20}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{73}{20}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{365}}{10} x-\frac{1}{2}=-\frac{\sqrt{365}}{10}
Whakarūnātia.
x=\frac{\sqrt{365}}{10}+\frac{1}{2} x=-\frac{\sqrt{365}}{10}+\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.