Whakaoti mō x
x=-1
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-8x-9=0
Whakawehea ngā taha e rua ki te 5.
a+b=-8 ab=1\left(-9\right)=-9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-9 3,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
1-9=-8 3-3=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=1
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-9x\right)+\left(x-9\right)
Tuhia anō te x^{2}-8x-9 hei \left(x^{2}-9x\right)+\left(x-9\right).
x\left(x-9\right)+x-9
Whakatauwehea atu x i te x^{2}-9x.
\left(x-9\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=-1
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+1=0.
5x^{2}-40x-45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\left(-45\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -40 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\left(-45\right)}}{2\times 5}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\left(-45\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-40\right)±\sqrt{1600+900}}{2\times 5}
Whakareatia -20 ki te -45.
x=\frac{-\left(-40\right)±\sqrt{2500}}{2\times 5}
Tāpiri 1600 ki te 900.
x=\frac{-\left(-40\right)±50}{2\times 5}
Tuhia te pūtakerua o te 2500.
x=\frac{40±50}{2\times 5}
Ko te tauaro o -40 ko 40.
x=\frac{40±50}{10}
Whakareatia 2 ki te 5.
x=\frac{90}{10}
Nā, me whakaoti te whārite x=\frac{40±50}{10} ina he tāpiri te ±. Tāpiri 40 ki te 50.
x=9
Whakawehe 90 ki te 10.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{40±50}{10} ina he tango te ±. Tango 50 mai i 40.
x=-1
Whakawehe -10 ki te 10.
x=9 x=-1
Kua oti te whārite te whakatau.
5x^{2}-40x-45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-40x-45-\left(-45\right)=-\left(-45\right)
Me tāpiri 45 ki ngā taha e rua o te whārite.
5x^{2}-40x=-\left(-45\right)
Mā te tango i te -45 i a ia ake anō ka toe ko te 0.
5x^{2}-40x=45
Tango -45 mai i 0.
\frac{5x^{2}-40x}{5}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{40}{5}\right)x=\frac{45}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-8x=\frac{45}{5}
Whakawehe -40 ki te 5.
x^{2}-8x=9
Whakawehe 45 ki te 5.
x^{2}-8x+\left(-4\right)^{2}=9+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=9+16
Pūrua -4.
x^{2}-8x+16=25
Tāpiri 9 ki te 16.
\left(x-4\right)^{2}=25
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=5 x-4=-5
Whakarūnātia.
x=9 x=-1
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}