Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}-40x+85=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 85}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -40 mō b, me 85 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 85}}{2\times 5}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 85}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-40\right)±\sqrt{1600-1700}}{2\times 5}
Whakareatia -20 ki te 85.
x=\frac{-\left(-40\right)±\sqrt{-100}}{2\times 5}
Tāpiri 1600 ki te -1700.
x=\frac{-\left(-40\right)±10i}{2\times 5}
Tuhia te pūtakerua o te -100.
x=\frac{40±10i}{2\times 5}
Ko te tauaro o -40 ko 40.
x=\frac{40±10i}{10}
Whakareatia 2 ki te 5.
x=\frac{40+10i}{10}
Nā, me whakaoti te whārite x=\frac{40±10i}{10} ina he tāpiri te ±. Tāpiri 40 ki te 10i.
x=4+i
Whakawehe 40+10i ki te 10.
x=\frac{40-10i}{10}
Nā, me whakaoti te whārite x=\frac{40±10i}{10} ina he tango te ±. Tango 10i mai i 40.
x=4-i
Whakawehe 40-10i ki te 10.
x=4+i x=4-i
Kua oti te whārite te whakatau.
5x^{2}-40x+85=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-40x+85-85=-85
Me tango 85 mai i ngā taha e rua o te whārite.
5x^{2}-40x=-85
Mā te tango i te 85 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}-40x}{5}=-\frac{85}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{85}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-8x=-\frac{85}{5}
Whakawehe -40 ki te 5.
x^{2}-8x=-17
Whakawehe -85 ki te 5.
x^{2}-8x+\left(-4\right)^{2}=-17+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-17+16
Pūrua -4.
x^{2}-8x+16=-1
Tāpiri -17 ki te 16.
\left(x-4\right)^{2}=-1
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=i x-4=-i
Whakarūnātia.
x=4+i x=4-i
Me tāpiri 4 ki ngā taha e rua o te whārite.