Whakaoti mō x
x=-2
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-7x-18=0
Whakawehea ngā taha e rua ki te 5.
a+b=-7 ab=1\left(-18\right)=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-9 b=2
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(x^{2}-9x\right)+\left(2x-18\right)
Tuhia anō te x^{2}-7x-18 hei \left(x^{2}-9x\right)+\left(2x-18\right).
x\left(x-9\right)+2\left(x-9\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-9\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=-2
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+2=0.
5x^{2}-35x-90=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 5\left(-90\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -35 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 5\left(-90\right)}}{2\times 5}
Pūrua -35.
x=\frac{-\left(-35\right)±\sqrt{1225-20\left(-90\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-35\right)±\sqrt{1225+1800}}{2\times 5}
Whakareatia -20 ki te -90.
x=\frac{-\left(-35\right)±\sqrt{3025}}{2\times 5}
Tāpiri 1225 ki te 1800.
x=\frac{-\left(-35\right)±55}{2\times 5}
Tuhia te pūtakerua o te 3025.
x=\frac{35±55}{2\times 5}
Ko te tauaro o -35 ko 35.
x=\frac{35±55}{10}
Whakareatia 2 ki te 5.
x=\frac{90}{10}
Nā, me whakaoti te whārite x=\frac{35±55}{10} ina he tāpiri te ±. Tāpiri 35 ki te 55.
x=9
Whakawehe 90 ki te 10.
x=-\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{35±55}{10} ina he tango te ±. Tango 55 mai i 35.
x=-2
Whakawehe -20 ki te 10.
x=9 x=-2
Kua oti te whārite te whakatau.
5x^{2}-35x-90=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-35x-90-\left(-90\right)=-\left(-90\right)
Me tāpiri 90 ki ngā taha e rua o te whārite.
5x^{2}-35x=-\left(-90\right)
Mā te tango i te -90 i a ia ake anō ka toe ko te 0.
5x^{2}-35x=90
Tango -90 mai i 0.
\frac{5x^{2}-35x}{5}=\frac{90}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{35}{5}\right)x=\frac{90}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-7x=\frac{90}{5}
Whakawehe -35 ki te 5.
x^{2}-7x=18
Whakawehe 90 ki te 5.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=18+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=18+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{121}{4}
Tāpiri 18 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{11}{2} x-\frac{7}{2}=-\frac{11}{2}
Whakarūnātia.
x=9 x=-2
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}