Whakaoti mō x
x=2
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-25x-5x=-40
Tangohia te 5x mai i ngā taha e rua.
5x^{2}-30x=-40
Pahekotia te -25x me -5x, ka -30x.
5x^{2}-30x+40=0
Me tāpiri te 40 ki ngā taha e rua.
x^{2}-6x+8=0
Whakawehea ngā taha e rua ki te 5.
a+b=-6 ab=1\times 8=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-4 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Tuhia anō te x^{2}-6x+8 hei \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-4\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=2
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-2=0.
5x^{2}-25x-5x=-40
Tangohia te 5x mai i ngā taha e rua.
5x^{2}-30x=-40
Pahekotia te -25x me -5x, ka -30x.
5x^{2}-30x+40=0
Me tāpiri te 40 ki ngā taha e rua.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 5\times 40}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -30 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 5\times 40}}{2\times 5}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-20\times 40}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-30\right)±\sqrt{900-800}}{2\times 5}
Whakareatia -20 ki te 40.
x=\frac{-\left(-30\right)±\sqrt{100}}{2\times 5}
Tāpiri 900 ki te -800.
x=\frac{-\left(-30\right)±10}{2\times 5}
Tuhia te pūtakerua o te 100.
x=\frac{30±10}{2\times 5}
Ko te tauaro o -30 ko 30.
x=\frac{30±10}{10}
Whakareatia 2 ki te 5.
x=\frac{40}{10}
Nā, me whakaoti te whārite x=\frac{30±10}{10} ina he tāpiri te ±. Tāpiri 30 ki te 10.
x=4
Whakawehe 40 ki te 10.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{30±10}{10} ina he tango te ±. Tango 10 mai i 30.
x=2
Whakawehe 20 ki te 10.
x=4 x=2
Kua oti te whārite te whakatau.
5x^{2}-25x-5x=-40
Tangohia te 5x mai i ngā taha e rua.
5x^{2}-30x=-40
Pahekotia te -25x me -5x, ka -30x.
\frac{5x^{2}-30x}{5}=-\frac{40}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{30}{5}\right)x=-\frac{40}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-6x=-\frac{40}{5}
Whakawehe -30 ki te 5.
x^{2}-6x=-8
Whakawehe -40 ki te 5.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-8+9
Pūrua -3.
x^{2}-6x+9=1
Tāpiri -8 ki te 9.
\left(x-3\right)^{2}=1
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=1 x-3=-1
Whakarūnātia.
x=4 x=2
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}