Whakaoti mō x
x=1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+3=0
Whakawehea ngā taha e rua ki te 5.
a+b=-4 ab=1\times 3=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(-x+3\right)
Tuhia anō te x^{2}-4x+3 hei \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x-1=0.
5x^{2}-20x+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 5\times 15}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -20 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 5\times 15}}{2\times 5}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-20\times 15}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-20\right)±\sqrt{400-300}}{2\times 5}
Whakareatia -20 ki te 15.
x=\frac{-\left(-20\right)±\sqrt{100}}{2\times 5}
Tāpiri 400 ki te -300.
x=\frac{-\left(-20\right)±10}{2\times 5}
Tuhia te pūtakerua o te 100.
x=\frac{20±10}{2\times 5}
Ko te tauaro o -20 ko 20.
x=\frac{20±10}{10}
Whakareatia 2 ki te 5.
x=\frac{30}{10}
Nā, me whakaoti te whārite x=\frac{20±10}{10} ina he tāpiri te ±. Tāpiri 20 ki te 10.
x=3
Whakawehe 30 ki te 10.
x=\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{20±10}{10} ina he tango te ±. Tango 10 mai i 20.
x=1
Whakawehe 10 ki te 10.
x=3 x=1
Kua oti te whārite te whakatau.
5x^{2}-20x+15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-20x+15-15=-15
Me tango 15 mai i ngā taha e rua o te whārite.
5x^{2}-20x=-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}-20x}{5}=-\frac{15}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{20}{5}\right)x=-\frac{15}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-4x=-\frac{15}{5}
Whakawehe -20 ki te 5.
x^{2}-4x=-3
Whakawehe -15 ki te 5.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-3+4
Pūrua -2.
x^{2}-4x+4=1
Tāpiri -3 ki te 4.
\left(x-2\right)^{2}=1
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=1 x-2=-1
Whakarūnātia.
x=3 x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}