Whakaoti mō x
x = \frac{3 \sqrt{17} + 21}{8} \approx 4.17116461
x = \frac{21 - 3 \sqrt{17}}{8} \approx 1.07883539
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-20x+12-x^{2}=1x-6
Tangohia te x^{2} mai i ngā taha e rua.
4x^{2}-20x+12=1x-6
Pahekotia te 5x^{2} me -x^{2}, ka 4x^{2}.
4x^{2}-20x+12-x=-6
Tangohia te 1x mai i ngā taha e rua.
4x^{2}-21x+12=-6
Pahekotia te -20x me -x, ka -21x.
4x^{2}-21x+12+6=0
Me tāpiri te 6 ki ngā taha e rua.
4x^{2}-21x+18=0
Tāpirihia te 12 ki te 6, ka 18.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 4\times 18}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -21 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 4\times 18}}{2\times 4}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-16\times 18}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-21\right)±\sqrt{441-288}}{2\times 4}
Whakareatia -16 ki te 18.
x=\frac{-\left(-21\right)±\sqrt{153}}{2\times 4}
Tāpiri 441 ki te -288.
x=\frac{-\left(-21\right)±3\sqrt{17}}{2\times 4}
Tuhia te pūtakerua o te 153.
x=\frac{21±3\sqrt{17}}{2\times 4}
Ko te tauaro o -21 ko 21.
x=\frac{21±3\sqrt{17}}{8}
Whakareatia 2 ki te 4.
x=\frac{3\sqrt{17}+21}{8}
Nā, me whakaoti te whārite x=\frac{21±3\sqrt{17}}{8} ina he tāpiri te ±. Tāpiri 21 ki te 3\sqrt{17}.
x=\frac{21-3\sqrt{17}}{8}
Nā, me whakaoti te whārite x=\frac{21±3\sqrt{17}}{8} ina he tango te ±. Tango 3\sqrt{17} mai i 21.
x=\frac{3\sqrt{17}+21}{8} x=\frac{21-3\sqrt{17}}{8}
Kua oti te whārite te whakatau.
5x^{2}-20x+12-x^{2}=1x-6
Tangohia te x^{2} mai i ngā taha e rua.
4x^{2}-20x+12=1x-6
Pahekotia te 5x^{2} me -x^{2}, ka 4x^{2}.
4x^{2}-20x+12-x=-6
Tangohia te 1x mai i ngā taha e rua.
4x^{2}-21x+12=-6
Pahekotia te -20x me -x, ka -21x.
4x^{2}-21x=-6-12
Tangohia te 12 mai i ngā taha e rua.
4x^{2}-21x=-18
Tangohia te 12 i te -6, ka -18.
\frac{4x^{2}-21x}{4}=-\frac{18}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{21}{4}x=-\frac{18}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{21}{4}x=-\frac{9}{2}
Whakahekea te hautanga \frac{-18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=-\frac{9}{2}+\left(-\frac{21}{8}\right)^{2}
Whakawehea te -\frac{21}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{8}. Nā, tāpiria te pūrua o te -\frac{21}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{21}{4}x+\frac{441}{64}=-\frac{9}{2}+\frac{441}{64}
Pūruatia -\frac{21}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{153}{64}
Tāpiri -\frac{9}{2} ki te \frac{441}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{21}{8}\right)^{2}=\frac{153}{64}
Tauwehea x^{2}-\frac{21}{4}x+\frac{441}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{153}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{21}{8}=\frac{3\sqrt{17}}{8} x-\frac{21}{8}=-\frac{3\sqrt{17}}{8}
Whakarūnātia.
x=\frac{3\sqrt{17}+21}{8} x=\frac{21-3\sqrt{17}}{8}
Me tāpiri \frac{21}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}