Tauwehe
\left(x-4\right)\left(5x+6\right)
Aromātai
\left(x-4\right)\left(5x+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-14 ab=5\left(-24\right)=-120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Tātaihia te tapeke mō ia takirua.
a=-20 b=6
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(5x^{2}-20x\right)+\left(6x-24\right)
Tuhia anō te 5x^{2}-14x-24 hei \left(5x^{2}-20x\right)+\left(6x-24\right).
5x\left(x-4\right)+6\left(x-4\right)
Tauwehea te 5x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-4\right)\left(5x+6\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
5x^{2}-14x-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-24\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-24\right)}}{2\times 5}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-20\left(-24\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-14\right)±\sqrt{196+480}}{2\times 5}
Whakareatia -20 ki te -24.
x=\frac{-\left(-14\right)±\sqrt{676}}{2\times 5}
Tāpiri 196 ki te 480.
x=\frac{-\left(-14\right)±26}{2\times 5}
Tuhia te pūtakerua o te 676.
x=\frac{14±26}{2\times 5}
Ko te tauaro o -14 ko 14.
x=\frac{14±26}{10}
Whakareatia 2 ki te 5.
x=\frac{40}{10}
Nā, me whakaoti te whārite x=\frac{14±26}{10} ina he tāpiri te ±. Tāpiri 14 ki te 26.
x=4
Whakawehe 40 ki te 10.
x=-\frac{12}{10}
Nā, me whakaoti te whārite x=\frac{14±26}{10} ina he tango te ±. Tango 26 mai i 14.
x=-\frac{6}{5}
Whakahekea te hautanga \frac{-12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5x^{2}-14x-24=5\left(x-4\right)\left(x-\left(-\frac{6}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -\frac{6}{5} mō te x_{2}.
5x^{2}-14x-24=5\left(x-4\right)\left(x+\frac{6}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
5x^{2}-14x-24=5\left(x-4\right)\times \frac{5x+6}{5}
Tāpiri \frac{6}{5} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5x^{2}-14x-24=\left(x-4\right)\left(5x+6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}