Tauwehe
\left(x-1\right)\left(5x-9\right)
Aromātai
\left(x-1\right)\left(5x-9\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-14 ab=5\times 9=45
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-45 -3,-15 -5,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
-1-45=-46 -3-15=-18 -5-9=-14
Tātaihia te tapeke mō ia takirua.
a=-9 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(5x^{2}-9x\right)+\left(-5x+9\right)
Tuhia anō te 5x^{2}-14x+9 hei \left(5x^{2}-9x\right)+\left(-5x+9\right).
x\left(5x-9\right)-\left(5x-9\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(5x-9\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi 5x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
5x^{2}-14x+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\times 9}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 5\times 9}}{2\times 5}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-20\times 9}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-14\right)±\sqrt{196-180}}{2\times 5}
Whakareatia -20 ki te 9.
x=\frac{-\left(-14\right)±\sqrt{16}}{2\times 5}
Tāpiri 196 ki te -180.
x=\frac{-\left(-14\right)±4}{2\times 5}
Tuhia te pūtakerua o te 16.
x=\frac{14±4}{2\times 5}
Ko te tauaro o -14 ko 14.
x=\frac{14±4}{10}
Whakareatia 2 ki te 5.
x=\frac{18}{10}
Nā, me whakaoti te whārite x=\frac{14±4}{10} ina he tāpiri te ±. Tāpiri 14 ki te 4.
x=\frac{9}{5}
Whakahekea te hautanga \frac{18}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{14±4}{10} ina he tango te ±. Tango 4 mai i 14.
x=1
Whakawehe 10 ki te 10.
5x^{2}-14x+9=5\left(x-\frac{9}{5}\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9}{5} mō te x_{1} me te 1 mō te x_{2}.
5x^{2}-14x+9=5\times \frac{5x-9}{5}\left(x-1\right)
Tango \frac{9}{5} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5x^{2}-14x+9=\left(5x-9\right)\left(x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}