Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}-13x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 5\left(-30\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -13 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 5\left(-30\right)}}{2\times 5}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-20\left(-30\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-13\right)±\sqrt{169+600}}{2\times 5}
Whakareatia -20 ki te -30.
x=\frac{-\left(-13\right)±\sqrt{769}}{2\times 5}
Tāpiri 169 ki te 600.
x=\frac{13±\sqrt{769}}{2\times 5}
Ko te tauaro o -13 ko 13.
x=\frac{13±\sqrt{769}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{769}+13}{10}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{769}}{10} ina he tāpiri te ±. Tāpiri 13 ki te \sqrt{769}.
x=\frac{13-\sqrt{769}}{10}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{769}}{10} ina he tango te ±. Tango \sqrt{769} mai i 13.
x=\frac{\sqrt{769}+13}{10} x=\frac{13-\sqrt{769}}{10}
Kua oti te whārite te whakatau.
5x^{2}-13x-30=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-13x-30-\left(-30\right)=-\left(-30\right)
Me tāpiri 30 ki ngā taha e rua o te whārite.
5x^{2}-13x=-\left(-30\right)
Mā te tango i te -30 i a ia ake anō ka toe ko te 0.
5x^{2}-13x=30
Tango -30 mai i 0.
\frac{5x^{2}-13x}{5}=\frac{30}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{13}{5}x=\frac{30}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{13}{5}x=6
Whakawehe 30 ki te 5.
x^{2}-\frac{13}{5}x+\left(-\frac{13}{10}\right)^{2}=6+\left(-\frac{13}{10}\right)^{2}
Whakawehea te -\frac{13}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{10}. Nā, tāpiria te pūrua o te -\frac{13}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{5}x+\frac{169}{100}=6+\frac{169}{100}
Pūruatia -\frac{13}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{5}x+\frac{169}{100}=\frac{769}{100}
Tāpiri 6 ki te \frac{169}{100}.
\left(x-\frac{13}{10}\right)^{2}=\frac{769}{100}
Tauwehea x^{2}-\frac{13}{5}x+\frac{169}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{10}\right)^{2}}=\sqrt{\frac{769}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{10}=\frac{\sqrt{769}}{10} x-\frac{13}{10}=-\frac{\sqrt{769}}{10}
Whakarūnātia.
x=\frac{\sqrt{769}+13}{10} x=\frac{13-\sqrt{769}}{10}
Me tāpiri \frac{13}{10} ki ngā taha e rua o te whārite.