Whakaoti mō x
x=\frac{2}{5}=0.4
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-12 ab=5\times 4=20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-20 -2,-10 -4,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
-1-20=-21 -2-10=-12 -4-5=-9
Tātaihia te tapeke mō ia takirua.
a=-10 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(5x^{2}-10x\right)+\left(-2x+4\right)
Tuhia anō te 5x^{2}-12x+4 hei \left(5x^{2}-10x\right)+\left(-2x+4\right).
5x\left(x-2\right)-2\left(x-2\right)
Tauwehea te 5x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-2\right)\left(5x-2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=\frac{2}{5}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 5x-2=0.
5x^{2}-12x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 4}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -12 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 4}}{2\times 5}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 4}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 5}
Whakareatia -20 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 5}
Tāpiri 144 ki te -80.
x=\frac{-\left(-12\right)±8}{2\times 5}
Tuhia te pūtakerua o te 64.
x=\frac{12±8}{2\times 5}
Ko te tauaro o -12 ko 12.
x=\frac{12±8}{10}
Whakareatia 2 ki te 5.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{12±8}{10} ina he tāpiri te ±. Tāpiri 12 ki te 8.
x=2
Whakawehe 20 ki te 10.
x=\frac{4}{10}
Nā, me whakaoti te whārite x=\frac{12±8}{10} ina he tango te ±. Tango 8 mai i 12.
x=\frac{2}{5}
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=\frac{2}{5}
Kua oti te whārite te whakatau.
5x^{2}-12x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-12x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
5x^{2}-12x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}-12x}{5}=-\frac{4}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{12}{5}x=-\frac{4}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-\frac{4}{5}+\left(-\frac{6}{5}\right)^{2}
Whakawehea te -\frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{6}{5}. Nā, tāpiria te pūrua o te -\frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{4}{5}+\frac{36}{25}
Pūruatia -\frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{16}{25}
Tāpiri -\frac{4}{5} ki te \frac{36}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{6}{5}\right)^{2}=\frac{16}{25}
Tauwehea x^{2}-\frac{12}{5}x+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{6}{5}=\frac{4}{5} x-\frac{6}{5}=-\frac{4}{5}
Whakarūnātia.
x=2 x=\frac{2}{5}
Me tāpiri \frac{6}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}