Whakaoti mō x
x = \frac{\sqrt{41} + 11}{10} \approx 1.740312424
x=\frac{11-\sqrt{41}}{10}\approx 0.459687576
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-11x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\times 4}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -11 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 5\times 4}}{2\times 5}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-20\times 4}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-11\right)±\sqrt{121-80}}{2\times 5}
Whakareatia -20 ki te 4.
x=\frac{-\left(-11\right)±\sqrt{41}}{2\times 5}
Tāpiri 121 ki te -80.
x=\frac{11±\sqrt{41}}{2\times 5}
Ko te tauaro o -11 ko 11.
x=\frac{11±\sqrt{41}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{41}+11}{10}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{41}}{10} ina he tāpiri te ±. Tāpiri 11 ki te \sqrt{41}.
x=\frac{11-\sqrt{41}}{10}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{41}}{10} ina he tango te ±. Tango \sqrt{41} mai i 11.
x=\frac{\sqrt{41}+11}{10} x=\frac{11-\sqrt{41}}{10}
Kua oti te whārite te whakatau.
5x^{2}-11x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-11x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
5x^{2}-11x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}-11x}{5}=-\frac{4}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{11}{5}x=-\frac{4}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{11}{5}x+\left(-\frac{11}{10}\right)^{2}=-\frac{4}{5}+\left(-\frac{11}{10}\right)^{2}
Whakawehea te -\frac{11}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{10}. Nā, tāpiria te pūrua o te -\frac{11}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{5}x+\frac{121}{100}=-\frac{4}{5}+\frac{121}{100}
Pūruatia -\frac{11}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{5}x+\frac{121}{100}=\frac{41}{100}
Tāpiri -\frac{4}{5} ki te \frac{121}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{10}\right)^{2}=\frac{41}{100}
Tauwehea x^{2}-\frac{11}{5}x+\frac{121}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{10}\right)^{2}}=\sqrt{\frac{41}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{10}=\frac{\sqrt{41}}{10} x-\frac{11}{10}=-\frac{\sqrt{41}}{10}
Whakarūnātia.
x=\frac{\sqrt{41}+11}{10} x=\frac{11-\sqrt{41}}{10}
Me tāpiri \frac{11}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}